powered by CADENAS

Social Share

Amazon

Diode électroluminescente (22674 views - Electronics & PCB Engineering)

Une diode électroluminescente (abrégé en LED, de l'anglais : light-emitting diode), est un dispositif opto-électronique capable d’émettre de la lumière lorsqu’il est parcouru par un courant électrique. Une diode électroluminescente ne laisse passer le courant électrique que dans un seul sens (le sens passant, comme une diode classique, l'inverse étant le sens bloquant) et produit un rayonnement monochromatique ou polychromatique non cohérent à partir de la conversion d’énergie électrique lorsqu'un courant la traverse. Elle compte plusieurs dérivées, principalement, l'OLED, l'AMOLED ou le FOLED (pour flexible oled). En raison de leur rendement lumineux, les LED pourraient représenter 75 % du marché de l'éclairage domestique et automobile avant 2020. Elles sont aussi utilisées dans la construction des écrans plats de télévision : pour le rétroéclairage des écrans à cristaux liquides ou comme source d'illumination principale dans les télévisions à OLED. Les premières LED à être commercialisées ont produit de la lumière infrarouge, rouge, verte puis jaune,. L'arrivée de la LED bleue, associée aux progrès techniques et d'assemblage permet de couvrir « la bande des longueurs d'onde d'émission s’étendant de l'ultraviolet (350 nm) à l’infrarouge (2 000 nm), ce qui répond à de nombreux besoins. ». De nombreux appareils sont munis de LED composites (trois LED réunies en un composant : rouge, vert et bleu) permettant d'afficher de très nombreuses couleurs.
Go to Article

Explanation by Hotspot Model

Youtube


    

Diode électroluminescente

Diode électroluminescente

« Led » redirige ici. Pour les autres significations, voir LED.

Une diode électroluminescente (abrégé en LED, de l'anglais : light-emitting diode), est un dispositif opto-électronique capable d’émettre de la lumière lorsqu’il est parcouru par un courant électrique. Une diode électroluminescente ne laisse passer le courant électrique que dans un seul sens (le sens passant, comme une diode classique, l'inverse étant le sens bloquant) et produit un rayonnement monochromatique ou polychromatique non cohérent à partir de la conversion d’énergie électrique lorsqu'un courant la traverse.

Elle compte plusieurs dérivées, principalement, l'OLED, l'AMOLED ou le FOLED (pour flexible oled). En raison de leur rendement lumineux, les LED pourraient représenter 75 % du marché de l'éclairage domestique et automobile avant 2020[1]. Elles sont aussi utilisées dans la construction des écrans plats de télévision : pour le rétroéclairage des écrans à cristaux liquides ou comme source d'illumination principale dans les télévisions à OLED.

Les premières LED à être commercialisées ont produit de la lumière infrarouge, rouge, verte puis jaune[2],[3]. L'arrivée de la LED bleue, associée aux progrès techniques et d'assemblage permet de couvrir « la bande des longueurs d'onde[4] d'émission s’étendant de l'ultraviolet (350 nm) à l’infrarouge (2 000 nm), ce qui répond à de nombreux besoins. »[5]. De nombreux appareils sont munis de LED composites (trois LED réunies en un composant : rouge, vert et bleu) permettant d'afficher de très nombreuses couleurs.

Histoire

La première émission de lumière par un semi-conducteur date de 1907 et fut découverte par Henry Joseph Round. En 1927, Oleg Vladimirovich Lósev dépose le premier brevet de ce qui sera appelé, bien plus tard, une diode électroluminescente.

En 1955, Rubin Braunstein découvre l'émission infrarouge de l'arséniure de gallium[6], semi-conducteur qui sera ensuite utilisé par Nick Holonyak Jr. et S. Bevacqua pour créer la première LED rouge en 1962. Durant quelques années, les chercheurs se sont limités à quelques couleurs telles que le rouge (1962), le jaune, le vert et plus tard le bleu (1972)[3],[7] .

Shuji Nakamura, Isamu Akasaki et Hiroshi Amano

Dans les années 1990, les recherches, entre autres, de Shuji Nakamura et Takashi Mukai de Nichia, dans la technologie des semi-conducteurs InGaN permirent la création de LED bleues de forte luminosité, ensuite adaptées en LED blanches, par adjonction d'un luminophore jaune[8]. Cette avancée permit de nouvelles applications majeures telles que l'éclairage et le rétroéclairage des écrans de téléviseurs et des écrans à cristaux liquides. Le , Shuji Nakamura, Isamu Akasaki et Hiroshi Amano ont reçu le prix Nobel de physique pour leurs travaux sur les LED bleues[9].

Économie

Loi de Haitz 
Le développement de la technologie des LED suit une loi analogue à la loi de Moore, appelée loi de Haitz, du nom de Roland Haitz d’Agilent Technologies, et qui prévoit que les performances des LED doublent tous les 3 ans, pour des prix divisés par 10 tous les dix ans[10].

L'intérêt des lampes à LED en termes de consommation électrique, de durée de vie et de sécurité électrique s'est rapidement confirmé pour l’automobile (dans l'habitacle et pour les phares et clignotants où les LED se montrent plus performantes que les sources xénon ou halogène), l'éclairage urbain, l'éclairage d'infrastructures, les usages dans la marine et l’aéronautique. Cet intérêt a au début des années 2000 dopé le marché, qui a dépassé en 2010 le seuil des 10 milliards de dollars américains (USD), soutenu par une croissance annuelle globale de 13,6 % de 2001 à 2012, et devrait atteindre 14,8 milliards USD avant la fin 2015[11]. Dans ce marché la part de l’éclairage augmente régulièrement de 2008 à 2014 et devrait se stabiliser en 2018, alors que la part du rétro-éclairage devrait décroître dès 2014 en raison d'évolutions techniques[11].

La part destinée à l'automobile semble dans les années 2010-2015 stable (environ 10 % du marché global et pourrait le rester jusqu'à 2020[11]. Les LED ont d'abord équipé des véhicules de luxe (Audi, Mercedes) puis de moyenne gamme (Seat Léon, Volkswagen Polo en 2014).

En 2016, les principaux fabricants, leaders sur ce marché sont Nichia et Toyoda Gosei au Japon, notamment pour les LED GaN de « forte » puissance, plus de 1 watt), Philips Lumileds Lighting Company et OSRAM Opto Semiconductors GmbH en Europe, Cree et General Electric aux États-Unis. Samsung Electronics et Seoul Semiconductor (en) produisent des LED pour l'automobile.

Mécanisme d'émission

La recombinaison d'un électron et d'un trou d'électron dans un semi-conducteur conduit à l'émission d'un photon. En effet, la transition d'un électron entre la bande de conduction et la bande de valence peut se faire avec la conservation du vecteur d’onde . Elle est alors radiative (émissive) c'est-à-dire accompagnée de l’émission d’un photon. Dans une transition émissive, l'énergie du photon créé est donnée par la différence des niveaux d’énergie avant (Ei) et après (Ef) la transition :

(eV)

Une diode électroluminescente est une jonction P-N qui doit être polarisée en sens direct lorsqu’on veut émettre de la lumière. Le potentiel imposé aux bornes doit être supérieur à celui imposé par la jonction P-N. La plupart des recombinaisons sont radiatives. La face émettrice de la LED est la zone P car c'est la plus radiative[12].

Cliquez sur une vignette pour l’agrandir.

Techniques de fabrication

La longueur d’onde du rayonnement émis dépend de la largeur de la « bande interdite » et donc du matériau utilisé. Toutes les valeurs du spectre lumineux peuvent être atteintes avec les matériaux actuels. L’infrarouge est obtenu grâce à l’arséniure de gallium (GaAs) dopé au silicium (Si) ou au zinc (Zn). Les fabricants proposent de nombreux types de diodes aux spécificités différentes. Les diodes à l’arséniure de gallium sont les plus économiques et les plus utilisées. Les diodes à l’arséniure de gallium-aluminium (AlGaAs) offrent une plus grande puissance de sortie mais nécessitent une tension directe plus élevée et ont une longueur d’onde plus courte (< 950 nm, ce qui correspond au maximum de sensibilité des détecteurs au silicium) ; elles présentent une bonne linéarité jusqu’à 1,5 A. Enfin, les diodes à double hétérojonction (DH) AlGaAs offrent les avantages des deux techniques précédentes (faible tension directe) en ayant des temps de commutation très courts (durée nécessaire pour qu’un courant croisse de 10 % à 90 % de sa valeur finale ou pour décroître de 90 % à 10 %), permettant des débits de données très élevés dans les transmissions de données numériques par fibres optiques. Les temps de commutation dépendent de la capacité de la jonction dans la diode.

Efficacité lumineuse

L'efficacité lumineuse varie selon le type de diodes, de 20 à 100 lm/W, et atteignant en laboratoire les 200 lm/W[13]. Une grande disparité de performances existe selon la couleur (température de couleur pour le blanc), la puissance ou encore la marque.
Les bleues n’excèdent pas 30 lm/W alors que les vertes ont une efficacité lumineuse atteignant 100 lm/W[14].

La limite théorique d’une source qui transformerait intégralement toute l’énergie électrique en lumière visible est de 683 lm/W[15], mais il faudrait qu’elle possède un spectre monochromatique de longueur d’onde 555 nm.L'efficacité lumineuse théorique d’une LED blanche est de l’ordre de 250 lm/W[16]. Ce chiffre est inférieur à 683 lm/W du fait que le maximum de sensibilité de l’œil se situe vers 555 nm.

L'efficacité lumineuse des LED blanches de dernière génération est supérieure à celle des lampes à incandescence mais aussi à celui des lampes fluocompactes ou encore de certains modèles de lampes à décharge. Le spectre de la lumière émise est presque intégralement contenu dans le domaine du visible (les longueurs d’onde sont comprises entre 400 nm et 700 nm). Contrairement aux lampes à incandescence et aux lampes à décharge, les diodes électroluminescentes n’émettent quasiment pas d’infrarouge, sauf celles fabriquées spécifiquement dans ce but.

L'efficacité lumineuse dépend de la conception de la LED. Pour sortir du dispositif (semi-conducteur puis enveloppe externe en époxy), les photons doivent traverser (sans être absorbés) le semi-conducteur, de la jonction jusqu’à la surface, puis traverser la surface du semi-conducteur sans subir de réflexion et, notamment, ne pas subir la réflexion totale interne qui représente la grosse majorité des cas. Une fois arrivé dans l’enveloppe externe en résine époxy (quelquefois teintée pour des raisons pratiques et non pour des raisons optiques), la lumière traverse les interfaces vers l’air à incidence proche de la normale ainsi que le permet la forme de dôme avec un diamètre bien plus grand que la puce (3 à 5 mm au lieu de 300 µm). Dans les diodes électroluminescentes de dernière génération, notamment pour l’éclairage, ce dôme plastique fait l’objet d’une attention particulière car les puces sont plutôt millimétriques dans ce cas et le diagramme d’émission doit être de bonne qualité. À l’inverse, pour des gadgets, on trouve des LED quasiment sans dômes.

Effet Auger

Aux fortes intensités, l'efficacité lumineuse des LED chute. Il a été suspecté en 2007-2008[17],[18], mieux compris en 2010-2011[19],[20] puis confirmé début 2013 que cette diminution est attribuable à un « effet Auger » qui dissipe une partie de l'énergie sous forme de chaleur[21],[22]. Des projets de recherche visent à limiter ou contrôler cet effet[23].

Bilan environnemental

Ce bilan est discuté, car le développement massif des LED pourrait augmenter les tensions sur le marché sur certaines ressources non renouvelables (terres rares ou métaux précieux) et parce que la conversion des éclairages urbains aux LED semble souvent susciter une augmentation de l'illumination globale du ciel nocturne et donc de la pollution lumineuse visible de l'espace[25].

D'un autre côté les LED ont un fort potentiel d'économie en énergie, si leur utilisation est raisonnée pour éviter le risque d'effet rebond.

Des préoccupations sérieuses existent concernant les impacts sanitaires de lampes mal utilisées, et surtout via leurs effets de pollution lumineuse.
Ainsi, selon une étude[24] publiée en 2014 dans la revue Ecological Applications, alors que l’éclairage nocturne municipal et industriel a déjà changé la répartition des différentes espèces d'invertébrés autour des sources lumineuses[26] et semble contribuer à la régression ou la disparition de nombreuses espèces de papillons[27], l'éclairage public tend à utiliser à grande échelle les diodes électroluminescentes (LED) ; la question de l’impact des spectres lumineux des lampes prend donc de l’importance[28]. Ces spectres lumineux ont récemment beaucoup changé, et ils changeront encore avec le développement des LED[29]. Or, il apparaît que le spectre lumineux émis par les LED mises sur le marché dans les années 2000-2014 attire les papillons de nuit et certains autres insectes plus que la lumière jaune des ampoules à vapeur de sodium, en raison d’une sensibilité élevée de ces invertébrés nocturnes aux parts vert-bleue et UV du spectre. Des pièges lumineux à insectes volants équipés de LED capturent 48 % plus d'insectes que les mêmes pièges utilisant des lampes à vapeur de sodium, avec un effet également lié à la température de l’air (les invertébrés sont des animaux à sang froid, naturellement plus actif quand la température s’élève). Lors de cette étude plus de 20 000 insectes ont été capturés et identifiés : les espèces les plus fréquemment piégées étaient des papillons et des mouches[24].

Ces lampes sont froides et ne brûleront pas les insectes comme pouvaient le faire des lampes halogènes, mais le caractère très attractif des LED pour de nombreux invertébrés peut leur être fatal ; leur vol est perturbé et dans la zone d'attraction ils sont mis en situation de « piège écologique », car largement surexposés à des prédateurs de type araignées et chauve-souris, avec de possibles effets écologiques plus globaux si ces lampes étaient utilisées à grande échelle (perturbation des réseaux trophiques et possible renforcement des infestations de certaines cultures ou sylvicultures par des « ravageurs phytosanitaires » attirés par ces lampes, tels que le Bombyx disparate qui est source de dégâts importants depuis qu’il a été introduit aux États-Unis et qui se montre très attiré par la lumière[30] (les auteurs pointent les ports où un éclairage LED pourrait directement attirer des ravageurs ou des espèces exotiques envahissantes accidentellement apportées par des bateaux[24]). Ces espèces anormalement favorisées pouvant à leur tour mettre en péril des espèces natives rares ou menacées[31].

L’étude de 2014 n’a pas pu conclure que manipuler la température de la couleur des LED diminuaient leur impact ; mais les auteurs estiment qu'utiliser des filtres ou une combinaison de LED rouges, vertes, et bleues pourraient peut-être diminuer cette fatale attraction, mais alors avec des coûts en termes de consommation électrique et d’énergie[24] ou de terres rares. Ils concluent qu’il existe un besoin urgent de recherche collaborative entre écologues et ingénieurs de la lumière pour minimiser les conséquences potentiellement négatives des développements futurs de la technologie LED[24]. L'écoconception en amont des LED pourrait faciliter le recyclage des lampes usagées et en aval le ré-usage de LED d'objets désuets ou en fin de vie. De même des systèmes intelligents d'asservissement de l'éclairage aux besoins réels sont possibles (lampes équipées de filtres limitant les émissions dans le bleu-vert et le proche-UV, mieux bafflées c'est-à-dire produisant moins de halo et moins éblouissantes, ne s'allumant qu'à l'intensité nécessaire et uniquement quand on en a besoin, via un processus d'éclairage intelligent incluant la détection de présence et de luminosité ambiante, si possible intégré dans un smartgrid ou un système écodomotique plus global. En 2014, quatre villes dont Bordeaux, Riga en Lettonie, Piaseczno en Pologne et Aveiro au Portugal testent ce type de solution dans le cadre du programme européen « LITES »[32] (à l'installation ces systèmes sont 60 % plus cher, mais ce surcoût doit être rapidement récupéré par les économies d'électricité et l'amélioration de la qualité de l'environnement nocturne.

Article détaillé : Pollution lumineuse.

Caractéristiques techniques

Forme

Ce composant peut être encapsulé dans divers boitiers destinés à canaliser le flux de lumière émis de façon précise : cylindrique à bout arrondi en 3, 5, 8 et 10 mm de diamètre, cylindrique à bout plat, ou de forme plate (LED SMD[33]), rectangulaire, sur support coudé, en technologie traversante ou à monter en surface (CMS).

Les LED de puissance ont des formes plus homogènes : la luxeonW ci-contre est assez représentative. Ces types de LED sont également disponibles en version « multicœur », « multipuces » ou « multichips » en anglais, dont la partie émissive est composée de plusieurs puces semi-conductrices.

L'enveloppe transparente, ou capot, est généralement en résine époxy, parfois colorée ou recouverte de colorant.

Luminosité

L’intensité lumineuse générale des diodes électroluminescentes est assez faible, mais suffisante pour la signalisation sur tableau, ou bien les feux de circulation (feux tricolores, passages piétons). Les bleues sont également suffisamment puissantes pour signaliser les bords de route, la nuit, aux abords des villes. Le bâtiment du NASDAQ, à New York possède une façade lumineuse animée entièrement réalisée en LED (quelques millions).

Les LED de puissance sont aussi utilisées dans la signalisation maritime comme sur les bouées permanentes. Deux de ces diodes sont situées l’une par-dessus l’autre et suffisent à un éclairement important et visible par les bateaux de nuit.

Des LED de forte puissance ont vu le jour au début des années 2000. Dans la première décennie du XXIe siècle, des rendements lumineux d'environ 130 lumens/watt sont atteints avec ces LED[réf. nécessaire]. Par comparaison, les ampoules à filament de tungstène de 60 W atteignent un rendement lumineux d'environ 15 lumens/watt[réf. nécessaire].

Les LED sont, en 2014, suffisamment puissantes pour servir d'éclairage dans le secteur de l'automobile. Employées d'abord pour les feux de stop, clignotants ou de recul, celles-ci remplaceront probablement, à terme, toutes les lampes classiques.

Couleurs

La couleur de la lumière d'une diode électroluminescente peut être produite de différentes manières[34],[35] :

  • couleur due à la nature du semi-conducteur (capot transparent) : la longueur d'onde émise correspond directement au gap du matériau utilisé ;
  • coloration modifiée par le capot de la diode (émission bleue ou UV + revêtement à base de luminophores) ;
  • coloration par plusieurs émissions de longueur d'onde différentes (diodes électroluminescentes polychromatiques). Elles permettent notamment de proposer une vaste gamme de couleurs[36].

Voici quelques colorations en fonction du semi-conducteur utilisé :

Couleur Longueur d’onde (nm) Tension de seuil (V) Semi-conducteur utilisé
Infrarouge λ > 760 ΔV < 1,63 arséniure de gallium-aluminium (AlGaAs)
Rouge 610 < λ < 760 1,63 < ΔV < 2,03 arséniure de gallium-aluminium (AlGaAs)
phospho-arséniure de gallium (GaAsP)
Orange 590 < λ < 610 2,03 < ΔV < 2,10 phospho-arséniure de gallium (GaAsP)
Jaune 570 < λ < 590 2,10 < ΔV < 2,18 phospho-arséniure de gallium (GaAsP)
Vert 500 < λ < 570 2,18 < ΔV < 2,48 nitrure de gallium (GaN)
phosphure de gallium (GaP)
Bleu 450 < λ < 500 2,48 < ΔV < 2,76 séléniure de zinc (ZnSe)
nitrure de gallium-indium (InGaN)
carbure de silicium (SiC)
Violet 400 < λ < 450 2,76 < ΔV < 3,1
Ultraviolet λ < 400 ΔV > 3,1 diamant (C)
nitrure d'aluminium (AlN)
nitrure d'aluminium-gallium (AlGaN)
Blanc Chaude à froide ΔV = 3,5

Pour le blanc, on ne parle pas de longueur d’onde mais de température de couleur proximale. Celle des diodes électroluminescentes est assez variable en fonction du modèle.

Câblage et alimentation électrique

Les diodes électroluminescentes sont polarisées : on raccordera le pôle « - » à la cathode « - » et donc le pôle « + » à l'anode « + ». Les diodes à dôme basse puissance ont généralement trois détrompeurs : la cathode est plus courte, l'électrode à l'intérieur du dôme est plus grosse et le bord extérieur du dôme est plat. Inversement, l'anode est plus longue, l'électrode à l'intérieur du dôme est plus petite et le bord extérieur du dôme est arrondi (dessins en haut de page).

Cliquez sur une vignette pour l’agrandir.

Sur tous les modèles et pour toutes les puissances, il est indispensable de ne pas dépasser l’intensité admissible (typiquement : 10 à 30 mA pour une LED de faible puissance et de l'ordre de 350 à 1 000 mA pour une LED de forte puissance).

Donc il faut intercaler un circuit limiteur de courant, souvent une résistance en série pour les faibles puissances. Utiliser les données du fabricant pour calculer la résistance en fonction de cette intensité désirée I, de Valim la tension d’alimentation, de VLED la tension directe de la LED et du nombre n de LED en série (loi d'Ohm : R = (Valim - n × VLED) / I). On peut regrouper plusieurs diodes dans un schéma série ou série-parallèle : les tensions directes s’additionnant en mode série; ce qui permet de diminuer la résistance en série et donc d’augmenter le rendement du dispositif. Le courant maximal admissible est lui multiplié par le nombre de diodes en parallèle.

Une méthode peu dispendieuse en énergie et adaptée aux plus forte puissances, consiste à utiliser un circuit de régulation du courant basé sur des principes analogues à ceux mis en œuvre dans les alimentations électriques à découpage. Cette méthode est employée pour les lampes LED d’éclairage, le circuit est intégré dans les culots des lampes.

Il est également primordial d'apporter un soin particulier à l'alimentation électrique des LED pour conserver leurs caractéristiques colorimétriques (température de couleur proximale, IRC…)[37].

Points forts et faiblesses

Avantages

  • Petite taille : on peut par exemple construire des LED de la taille d'un pixel (ce qui ouvre la possibilité d'utiliser des diodes pour construire des écrans de haute résolution)
  • Facilité de montage sur un circuit imprimé, traditionnel ou CMS (Composant Monté en Surface).
  • Consommation inférieure aux lampes à incandescence et du même ordre de grandeur que les tubes fluorescents
  • Excellente résistance mécanique (chocs, écrasement, vibrations).
  • Taille beaucoup plus réduite que les lampes classiques ce qui offre la possibilité de réaliser des sources de lumière très ponctuelles, de faible à très faible consommation électrique (quelques dizaines de milliwatts) et avec un bon rendement. En assemblant plusieurs LED, on peut réaliser des éclairages avec des formes novatrices.
  • Durée de vie (20 000 à 50 000 heures environ) beaucoup plus longue qu’une lampe à incandescence (1 000 heures) ou qu'une lampe halogène (2 000 heures), mais du même ordre de grandeur que les lampes fluorescentes (5 000 à 70 000 heures). Les lampes puissantes voient leur durée de vie limitée, mais pouvant néanmoins atteindre 10 000, voire 15 000 heures selon le type d'utilisation qui en est fait[38],[39].
  • Fonctionnement en très basse tension (TBT), gage de sécurité et de facilité de transport. Il existe pour les campeurs des lampes de poche à LED actionnées par une simple dynamo à main (« lampe à manivelle ») de mouvement lent.
  • Atout non négligeable en matière de sécurité, par rapport aux systèmes lumineux classiques, leur inertie lumineuse est quasiment nulle. Elles s’allument et s’éteignent en un temps très court, ce qui permet l’utilisation en transmission de signaux à courte distance (optocoupleurs) ou longue (fibres optiques). Les LED atteignent immédiatement leur intensité lumineuse nominale.
  • Vu leur puissance, les LED classiques 5 mm ne chauffent presque pas et ne brûlent pas les doigts. Pour les montages de puissance supérieure à 1 W, il faut prévoir une dissipation de la chaleur, sans quoi la diode sera fortement endommagée, voire détruite du fait de l’échauffement. En effet, une diode électroluminescente convertit environ 20 % de l’énergie électrique en lumière, le reste étant dégagé sous forme de chaleur.
  • Les LED RVB (rouge-vert-bleu) permettent des mises en valeur colorées avec des possibilités de variations sans limite.

Inconvénients

  • L'indice de rendu de couleur (IRC) s'est amélioré depuis 2010. Les LED dites blanches sont généralement des LED bleues ou émettant dans l'UV dont une partie de la lumière produite est transformée par fluorescence en lumière jaune au moyen d'un luminophore qui est souvent un grenat d'yttrium et d'aluminium dopé par des ions de terres rares tels que le cérium trivalent Ce3+ (d'autres matériaux luminescents pouvant être utilisés pour produire un blanc plus chaud)[40],[41] : le spectre est moins régulier que celui d'une lampe halogène. Plus rarement, le blanc est obtenu au moyen de trois diodes de couleurs différentes.
  • Les LED, comme tout composant électronique, ont des limites maximales de température de fonctionnement, de même que certains composants passifs constitutifs de leur circuit d'alimentation (comme les condensateurs chimiques qui s'échauffent en fonction du courant efficace), ce qui conditionne en partie la durée de vie des lampes à LED. La dissipation thermique des composants des ampoules à LED est un facteur limitant leur montée en puissance notamment en assemblages multipuces[42]. Les recherches portent sur des moyens de limiter la température et de mieux dissiper la chaleur des LED de puissance (par exemple pour des lampadaires ou phares automobiles)[42],[43].
  • Selon le constructeur Philips, l'efficacité lumineuse de certaines LED baisse rapidement (comme pour la plupart des technologies lumineuses) pour ne plus produire en fin de vie que 20 % de la quantité de lumière initiale, mais pour les LED les plus performantes du marché, la quantité de lumière produite en fin de vie serait encore d'au moins 70 %[44]. La température accélère la baisse de l'efficacité lumineuse. Philips précise également que la couleur peut varier sur certaines LED blanches et tirer sur le vert en vieillissant[45].
  • Le processus de fabrication d'une LED est très coûteux en énergie[réf. nécessaire] (mais une production à grande échelle comme actuellement permet de réduire massivement ce coût).

Perspectives

En , le Laboratoire d'électronique et de technologie de l'information (LETI) et son voisin, l'Institut des nanosciences et cryogénie (INAC) ont reçu le prix EARTO Innovation Awards (European association of research and technology organisations) dans la catégorie « Impact attendu » pour leur mise au point d'une diode électroluminescente quatre fois moins chère à produire et produisant trois fois plus de lumière[46],[47],[48].

Utilisations

Familles

Il existe plusieurs manières de classer les diodes semi-électroluminescentes :

Classement selon la puissance

La première est un classement par puissance :

  • les diodes électroluminescentes de faible puissance < 1 W. Ce sont les plus connues du grand public car elles sont présentes dans notre quotidien depuis des années. Ce sont elles qui jouent le rôle de voyant lumineux sur les appareils électroménagers par exemple ;
  • les LED de forte puissance > 2 W. Elles sont en plein essor et leurs applications sont de plus en plus connues du grand public : flash de téléphones portables, éclairage domestique, éclairage de spectacle, lampe de poche ou frontales… Le principe de fonctionnement est identique. Certaines différences significatives existent entre les deux familles, consacrées chacune à un champ d’application spécifique.

Classement selon le spectre d'émission

Une autre manière de les classer est de considérer la répartition de l'énergie dans la gamme de longueur d'onde couvrant le visible (longueurs d'onde de l'ordre de 380 à 780 nm) ou l'invisible (principalement l'infrarouge). La raison de la distinction réside dans le fait que certaines diodes peuvent servir à éclairer, ce qui est l’une des applications phares du futur (proche) :

  • les chromatiques : l'énergie est concentrée sur une plage étroite de longueur d'onde (20 à 40 nm). Ces sources ont un spectre quasiment monochromatique ;
  • les blanches : l'énergie est répartie dans le visible sur toute la gamme de longueurs d'onde (380 à 780 nm environ) ;
  • les infrarouges : l'énergie est émise hors du spectre de la lumière visible (au-delà de 700 nm de longueur d'onde). Elles sont utilisées pour transmettre des signaux de télécommandes ou pour de la télémesure exploités par exemple dans la détection de position des consoles de jeux telles que la Wii, ou servir d'éclairage pour les caméras infrarouge, etc.

Autres classements

D'autres classements sont possibles, par exemple selon le caractère monopuce ou multipuce, la durée de vie, la consommation d'énergie ou encore la robustesse en cas de sollicitations sous contraintes (comme pour certains matériels industriels, militaires, spatiaux…)

Diodes électroluminescentes ordinaires

Éclairage

  • Signalisation routière, feux arrière de voitures ou de bicyclettes.
  • Signalisation ferroviaire.
  • Éclairage invisible pour caméras de surveillance (dans l’infrarouge).
  • Luminaires et éclairage urbain (plus récemment), avec par exemple Los Angeles, première métropole qui a remplacé ses 140 000 ampoules d'éclairage urbain par des diodes électroluminescentes de 2009 à 2014, ce qui devrait réduire de l'équivalent de 40 500 tonnes de carbone les émissions annuelles de cette ville (soit l'équivalent des émissions de 6 700 voitures)[49]. Après le remboursement de l'investissement, la ville pense aussi diminuer ses charges d'éclairage en économisant annuellement 10 millions de dollars[49].

Affichage

  • Signalisation d’état d’appareils divers (lampes témoins en face avant ou sur le circuit, tableaux de bord de voitures, équipements de sécurité).
  • Affichage alphabétique ou numérique d’appareils de mesure, de calculatrices, d’horloges.
  • Affichages de niveaux de mesures (niveaux de cuves, VU-mètres).
  • Affichage statique ou dynamique de messages (journaux lumineux).

Source de lumière quasi monochromatique

  • Photocoupleur.
  • Transmission de signaux par fibre optiques.
  • Télécommandes (LED infrarouges).
  • Cellules photoélectriques (LED infrarouges).
  • Faisceau laser pour les appareils de mesure.
  • Faisceau laser pour la lecture et la gravure des CD et DVD.
  • Luminothérapie contre l'acné.

Diodes électroluminescentes blanches

L’amélioration du rendement des LED permet de les employer en remplacement de lampes à incandescence ou fluorescence, à condition de les monter en nombre suffisant :

En 2006, le groupe américain Graffiti Research Lab a lancé un mouvement nommé Led throwies (lancer de LED) qui consiste à égayer les lieux publics en ajoutant de la couleur sur des surfaces magnétiques. Pour ceci, on combine une LED, une pile au lithium et un aimant, et on lance l’ensemble sur une surface magnétique[50].

En 2007, Audi et Lexus bénéficient de dérogations de la Commission européenne pour commercialiser des modèles munis de feux avant à base de LED. En 2009, la Ferrari 458 Italia innove elle aussi avec des phares à LED.

Plusieurs villes remplacent leur éclairage public par des LED dans le but de diminuer leur facture d’électricité et la pollution lumineuse du ciel (éclairage dirigé vers le bas). Le recours aux LED est aussi courant dans les feux tricolores. L’exemple de Grenoble est le plus souvent cité : la ville a réalisé son retour sur investissement en trois ans seulement. En effet, les LED permettent des économies d’énergie, mais ce sont surtout les coûts de maintenance qui baissent, du fait de leur robustesse.

En 2010, La RATP expérimente l'éclairage des espaces du métro parisien, notamment à la station Censier-Daubenton première station de métro entièrement éclairée par cette technologie. En 2012 estimant le produit mature la RATP (réseau de transport en commun de Paris) décide de modifier la totalité de son éclairage vers la technologie LED. C'est plus de 250 000 luminaires qui seront modifiés, faisant ainsi du métro parisien le premier réseau de transport en commun d'envergure à adopter le « tout LED »[51].

Les LED sont utilisées pour réaliser des écrans vidéo de très grande taille (plateaux TV salon dans des grands halls, stade…).

Le rétroéclairage de l’écran par des diodes électroluminescentes permet de fabriquer des écrans plus fins, plus lumineux, ayant une étendue colorimétrique plus importante et plus économes que son prédécesseur ACL à rétroéclairage par tube fluorescent (technologie CCFL). À noter que les constructeurs restent assez flous sur le fait que les LED dégagent plus de chaleur.



This article uses material from the Wikipedia article "Diode électroluminescente", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Electronics & PCB Engineering

Cadence, Mentor Graphics, Eagle CAD, Altium Designer, AUTODESK EAGLE, Cadence Allegro, DesignSpark PCB , Mentor PADS, Mentor Xpedition, Novarm DipTrace, Pulsonix, TARGET 3001!, Xpedition xDX Designer, Zuken CADSTAR, Altium P-CAD, Agnisys, Altera Quartus, OrCAD, kiCAD, Solido Design Automation, ELectronics, PCB, Curcuit Board, 3D drawings, 3D library, 3D content, PCB Design, 2D symbols, 2D drawings, 2D icons, 2D schematics