powered by CADENAS

Social Share

Fibonaccijev broj (17842 views - Mechanical Engineering)

U matematici, Fibonaccijevi brojevi oblikuju niz definiran sljedećom rekurzivnom relacijom: F ( n ) := { 0 ako je n = 0 ; 1 ako je n = 1 ; F n − 1 + F n − 2 ako je n > 1. {\displaystyle F(n):={\begin{cases}0&{\mbox{ako je }}n=0;\\1&{\mbox{ako je }}n=1;\\F_{n-1}+F_{n-2}\!\,&{\mbox{ako je }}n>1.\\\end{cases}}} To jest, nakon dvije početne vrijedosti, svaki sljedeći broj je zbroj dvaju prethodnika: 2+3 dat će 5, 3+5 dat će 8, 5+8 dat će 13 itd. Prvi Fibonaccijevi brojevi (slijed A000045 u OEIS) , također označeni kao Fn, za n = 0, 1, … , su: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811… Ponekad se za ovaj niz smatra da počinje na F1 = 1, ali uobičajenije je uključiti F0 = 0. Fibonaccijevi brojevi su imenovani po Leonardu od Pise, poznatom kao Fibonacci, iako su ranije opisani u Indiji.
Go to Article

Explanation by Hotspot Model

Fibonaccijev broj

Fibonaccijev broj

U matematici, Fibonaccijevi brojevi oblikuju niz definiran sljedećom rekurzivnom relacijom:

To jest, nakon dvije početne vrijedosti, svaki sljedeći broj je zbroj dvaju prethodnika: 2+3 dat će 5, 3+5 dat će 8, 5+8 dat će 13 itd. Prvi Fibonaccijevi brojevi (slijed A000045 u OEIS) , također označeni kao Fn, za n = 0, 1, … , su:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811…

Ponekad se za ovaj niz smatra da počinje na F1 = 1, ali uobičajenije je uključiti F0 = 0.

Fibonaccijevi brojevi su imenovani po Leonardu od Pise, poznatom kao Fibonacci, iako su ranije opisani u Indiji.[1][2]

Fibonnacijev niz u prirodi

Fibonaccijev niz se često povezuje i s brojem zlatnog reza fi (phi, φ), ili brojem kojeg mnogi zovu i "Božanskim omjerom". Uzmemo li jedan dio Fibonaccijevog niza, 2, 3, 5, 8, te podijelimo li svaki sljedeći broj s njemu prethodnim, dobiveni broj težit će broju 1,618 (3/2=1,5; 5/3=1,67; 8/5=1,6; ...; 39088169/24157817=1,618034). Broj 1,618 jest broj fi. Odnosi mjera kod biljaka, životinja i ljudi, sa zapanjujućom preciznošću se približava broju fi.

Slijedi nekoliko primjera broja fi i njegove povezanosti sa Fibonaccijem i prirodom:

  1. U pčelinjoj zajednici, košnici, uvijek je manji broj mužjaka pčela nego ženki pčela. Kada bi podijelili broj ženki sa brojem mužjaka pčela, uvijek bi dobili broj fi.
  2. Nautilus (glavonožac), u svojoj konstrukciji ima spirale. Kada bi izračunali odnos svakog spiralnog promjera prema sljedećem dobili bi broj fi.
  3. Sjeme suncokreta raste u suprotnim spiralama. Međusobni odnosi promjera rotacije je broj fi.
  4. Izmjerimo li čovječju dužinu od vrha glave do poda, zatim to podijelimo s dužinom od pupka do poda, dobijamo broj fi.
  1. Parmanand Singh. Acharya Hemachandra and the (so called) Fibonacci Numbers. Math . Ed. Siwan , 20(1):28-30,1986.ISSN 0047-6269]
  2. Parmanand Singh,"The So-called Fibonacci numbers in ancient and medieval India. Historia Mathematica v12 n3, 229–244,1985


Nedovršeni članak Fibonaccijev broj koji govori o matematici treba dopuniti. Dopunite ga prema pravilima Wikipedije.



This article uses material from the Wikipedia article "Fibonaccijev broj", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Mechanical Engineering

AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD