powered by CADENAS

Social Share

Rombo (geometria) (15583 views - Mechanical Engineering)

Il rombo o losanga è un poligono di quattro lati che ha tutti i lati della stessa lunghezza (congruenti); è un caso particolare di parallelogramma. Il quadrato è un particolare tipo di rombo: oltre ad avere tutti i lati congruenti, ha anche tutte le diagonali congruenti e gli angoli anch'essi congruenti.
Go to Article

Explanation by Hotspot Model

Rombo (geometria)

Rombo (geometria)

Rombo (geometria)

Licensed under Creative Commons Attribution-Share Alike 3.0 (Nessun autore leggibile automaticamente. Михајло Анђелковић presunto (secondo quanto affermano i diritti d'autore).).

Il rombo o losanga[1] è un poligono di quattro lati che ha tutti i lati della stessa lunghezza (congruenti); è un caso particolare di parallelogramma.

Il quadrato è un particolare tipo di rombo: oltre ad avere tutti i lati congruenti, ha anche tutte le diagonali congruenti e gli angoli anch'essi congruenti.

Proprietà

Lati

I lati opposti di un rombo sono paralleli: esso quindi appartiene alla famiglia dei parallelogrammi.

Diagonali

Essendo un quadrilatero, anche il rombo ha due diagonali: esse hanno la caratteristica di essere perpendicolari fra loro e di intersecarsi nel loro punto medio.

Ciascuna diagonale divide il rombo in due triangoli isosceli, che sono congruenti.

Le due diagonali costituiscono anche le bisettrici degli angoli.

Angoli

Gli angoli opposti sono congruenti, vale a dire hanno uguale ampiezza: quindi

Due angoli adiacenti a ciascun lato sono supplementari, con somma quindi pari a 180°:

Un caso particolare di rombo, avente tutti gli angoli uguali e pari a 90°, è il quadrato.

Altezza del rombo

L'altezza del rombo è pari al diametro della circonferenza inscritta al rombo o al rapporto tra l'area e lato base:

Perimetro del rombo

Se è il lato del rombo, il suo perimetro è dato da:

Area del rombo

L'area del rombo si può calcolare in quattro modi:

  1. come per tutti i parallelogrammi, effettuando il prodotto della base , coincidente con il lato del rombo, per l'altezza :
  2. moltiplicando la diagonale maggiore per la diagonale minore e dividendo il risultato per [2]:
  3. moltiplicando il semiperimetro per il raggio della circonferenza inscritta[3]:
  4. infine, calcolando il quadrato del lato e moltiplicandolo per il seno di uno qualunque degli angoli interni[4]
    In merito a questa quarta formula per il calcolo dell'area vanno notati alcuni punti:
    • e sono uguali perché e sono angoli supplementari: questo è il motivo per cui si può usare indifferentemente l'uno o l'altro;
    • il rombo produce la sua massima area quando i lati sono perpendicolari fra loro a formare un quadrato: in tal caso e sono uguali a e la formula si identifica con quella del quadrato ossia diventa
    • man mano che il rombo si schiaccia, e diventano minori di e quindi l'area del rombo diventa più piccola rispetto a quella del quadrato da cui si era partiti;
    • infine, schiacciando totalmente il rombo fino ad avere e quindi , la sua area diventa nulla.

Note

  1. ^ Rombo, in Treccani.it – Enciclopedie on line, Istituto dell'Enciclopedia Italiana, 15 marzo 2011.
  2. ^ La formula si giustifica considerando che l'area può essere ottenuta sommando le aree di due triangoli congruenti come ad esempio quello con vertici , e e quello con vertici , e . Considerando quest'ultimo si ha:
    Moltiplicando per otteniamo la formula del punto 2.
  3. ^ La formula si giustifica considerando che il raggio è anche pari all'altezza rispetto ad di uno qualunque dei quattro triangoli che compongono il rombo. Considerando ad esempio il triangolo che ha per vertici , e osserviamo che la sua area è data da:
    Moltiplicando per otteniamo la formula del punto 3:
    .
  4. ^ La formula si giustifica considerando che il prodotto coincide con l'altezza e quindi ricadiamo nella formula del punto 1:

Voci correlate[modifica | modifica wikitesto]



This article uses material from the Wikipedia article "Rombo (geometria)", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Mechanical Engineering

AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD