Licensed under Creative Commons Attribution-Share Alike 3.0 (RudolfSimon).
重量エネルギー密度 | 7002100000000000000♠100–243 Wh/kg[1][2][3] |
---|---|
体積エネルギー密度 | 7002250000000000000♠250–676 Wh/L[1][2][3] |
出力荷重比 | 7002250000000000000♠~250–340 W/kg[1] |
充電/放電効率 | 6999800000000000000♠80%–90%[4] |
エネルギーコスト | 7000150000000000000♠1.5 Wh/US$[5] |
自己放電率 |
6998800000000000000♠8% - 7001210000000000000♠21 °C 6999150000000000000♠15% - 7001400000000000000♠40 °C 6999310000000000000♠31% - 7001600000000000000♠60 °C (月あたり)[6] |
サイクル耐久性 |
LiCoO2: 500-1000回 LiMn2O4: 300-700回 NMC: 1000-2000回 LiFePO4: 1000-2000回 ※負極: 黒鉛[7] |
公称電圧 |
LiCoO2: 7000360000000000000♠3.6–3.7 V LiMn2O4: 7000370000000000000♠3.7–3.8 V NMC: 7000360000000000000♠3.6–3.7 V LiFePO4: 7000320000000000000♠3.2–3.3 V ※負極: 黒鉛[7] |
使用温度範囲(放電時) | 2998800000000000000♠−20 °C 〜 7001600000000000000♠60 °C[8] |
使用温度範囲(充電時) | 5000000000000000000♠0 °C 〜 7001450000000000000♠45 °C[8] |
テンプレートを表示 |
リチウムイオン二次電池(リチウムイオンにじでんち、lithium-ion rechargeable battery)は、正極と負極の間をリチウムイオンが移動することで充電や放電を行う二次電池である。正極、負極、電解質それぞれの材料は用途やメーカーによって様々であるが、代表的な構成は、正極にリチウム遷移金属複合酸化物、負極に炭素材料、電解質に有機溶媒などの非水電解質を用いる。単にリチウムイオン電池、リチウムイオンバッテリー、Li-ion電池、LIB、LiBとも言う。リチウムイオン二次電池という命名はソニー・エナジー・デバイスによる[9]。
なお、似た名前の電池には以下のようなものがある。
識別色は■青(シアン)。
1980年代、携帯電話やノートパソコンなどの携帯機器の開発により、高容量で小型軽量な二次電池(充電可能な電池)のニーズが高まったが、従来のニッケル水素電池などでは限界があり新型二次電池が切望されていた[要出典]。
1960年代、既にリチウムを電池に適用するアイデアはあった[要出典]。
1976年、エクソンのマイケル・スタンリー・ウィッティンガム(英語版)は金属リチウム二次電池を提案した[10]。ウィッティンガムは、正極に硫化チタン、負極に金属リチウムを使用したが、正極負極共に反応性に問題があり、実用化されなかった。
1974-1976年、ミュンヘン工科大学のベーゼンハルトは黒鉛内のリチウムイオンの可逆的な収納反応(インターカレーション)[11][12]と陰極の酸化物へのインターカレーションを発見した[13][14]。1976年、ベーゼンハルトはリチウム電池での応用を提案した[15][16]。(ただし、黒鉛が層間にアルカリ金属などを取り込み黒鉛層間化合物(英語版)をつくることは1926年から知られていた。)
1978-1979年、ペンシルベニア大学のSamar Basuは、黒鉛内でのリチウムイオンの電気化学的インターカレーションを実証した[17][18]。
しかし、負極に黒鉛を用いると、当時の一般的な電解液であるプロピレンカーボネート(金属リチウム電池に使われている)などほとんどの有機物は負極側で分解してしまう[19]ため、有機電解液を用いて炭素系材料にリチウムイオンを安定して電気化学的にインターカレーションさせることは困難と考えられていた。つまり負極に黒鉛を使う二次電池は実用化が困難とされていた。
1980年、オックスフォード大学のジョン・グッドイナフと水島公一らはリチウムと酸化コバルトの化合物であるコバルト酸リチウム (LiCoO2) などのリチウム遷移金属酸化物を正極材料として提案した[20][21]。これがリチウムイオン二次電池の正極の起源である。
1981年、三洋電機から黒鉛炭素質を負極材料とする二次電池の特許が出願された[22][23][24]。
1982年、ラシド・ヤザミ(英語版)らは固体電解質を用いて黒鉛内にリチウムイオンを電気化学的にインターカレーションさせることを実証した[25][26]。
一方、当時京都大学の山邊時雄らの量子化学的設計に基づいて提唱されたポリアセン系高分子型炭素材料[27]が、一次元グラファイトの名のもとに注目を集め、その作成がいろいろな所で試みられた。これに応えて1981年、鐘紡の矢田静邦が、安定な難黒鉛化炭素の一種であるポリアセン系有機半導体(PAS)を作成し[28][29]、これを用いて2種類のバッテリーが開発され、いずれも実用化された。一つは双方ともにPASを用いたキャパシタ的電池(PAS電池)、もう一つは負極にLiイオンをあらかじめドーピングしたPASを用いたもの(リチウムイオンキャパシタ )である。後者は、正極はキャパシタと同様に、負極はリチウムイオン電池と同様に作動する。このように、PASによって炭素材でもスムーズで安定なLiドープ、脱ドープが可能であることが初めて見出され、これを機に電気化学的に安定なドープ、脱ドープが可能な難黒鉛化から易黒鉛化を含む電極用炭素材料の開発が方々でなされることとなった。[30]
1983年、マイケル・メイクピース・サッカレー(英語版)とジョン・グッドイナフらは、スピネル構造を有するマンガン酸リチウム(LiMn2O4)を正極材料として紹介した[31]。コバルト酸リチウムと比較して安価で安全という特徴がある。(1996年に正極材料として実用化され、コバルト酸リチウムと同様に一般的に使われている。)
1986年、カナダのMoli Energy(英語版)により、正極に硫化モリブデン、負極に金属リチウムを使用した金属リチウム二次電池が製品化されたが、金属リチウムの化学活性がきわめて高いため、可逆性(充電の過程で負極にリチウムのデンドライトが析出・成長しそれが正極に接して短絡する危険性)や反応性(ほんの少しでも水分にふれると激しく発熱し水素ガスを発生させて発火する危険性)に問題があった。1989年にはNTTのショルダー型携帯電話などで発火事故が相次ぎ[32]、実用化されたとは言いがたく、金属リチウムを負極に使った一次電池は市販化されているが、二次電池への応用は危険とされ広く用いられることはなかった。
1990年、ジェフ・ダーンらは、負極に黒鉛を用いた場合に、電解液としてエチレンカーボネートを用いると初期の充電で分解されるものの黒鉛表面に保護被膜を形成することにより有機電解液の分解反応を停止できることを発見した[33]。(1994年に松下電池工業により電解液として採用され、現在に至るまでほぼ必須の溶媒として使われている。)
旭化成工業の吉野彰らは、白川英樹(2000年ノーベル化学賞)が1977年に発見した電気を通すプラスチックであるポリアセチレンに注目し、1981年に有機溶媒を用いた二次電池の負極に適していることを見いだした。また、正極にはジョン・グッドイナフらが1980年に発見したコバルト酸リチウム (LiCoO2) などのリチウム遷移金属酸化物を用いて、1983年にリチウムイオン二次電池の原型を創出した[34][35]。しかし、ポリアセチレンは真比重が低く電池容量が高くならないことと、電極材料として不安定である問題があった。そこで、1985年、吉野彰らは炭素材料を負極とし、リチウムを含有するコバルト酸リチウムを正極とする新しい二次電池であるリチウムイオン二次電池(LIB)の基本概念を確立した[36][24][37]。
吉野彰が次の点に着目したことによりLIBが誕生した。
また、特定の結晶構造を持つ炭素材料を見いだし[36][24]、実用的な炭素負極を実現した。
加えて、アルミ箔を正極集電体に用いる技術[38]、安全性を確保するための機能性セパレータ[39]などの本質的な電池の構成要素に関する技術を確立し、さらに安全素子技術[40]、保護回路・充放電技術、電極構造・電池構造等の技術を開発し、安全でかつ、電圧が金属リチウム二次電池に近い電池の実用化を成功させ、現在のLIBの構成をほぼ完成させた。
1986年、LIBのプロトタイプが試験生産され、米国DOT(運輸省、Department of Transportation)の「金属リチウム電池とは異なる」との認定を受け、プレマーケティングが開始された[41]。
1991年、ソニー・エナジー・テックは世界で初めてリチウムイオン電池を商品化した。次いで1993年にエイ・ティーバッテリー(旭化成工業と東芝との合弁会社)により商品化され、1994年に三洋電機により黒鉛炭素質を負極材料とするリチウムイオン電池が商品化された。
1997年、Akshaya Padhiとジョン・グッドイナフらはオリビン構造を有するリン酸鉄リチウム(LiFePO4)を正極材料として提案した[42]。コバルト酸リチウムと比較して安全で長寿命という特徴がある。2009年、ソニーはリン酸鉄リチウムイオン電池を商品化した。現在では各社から販売されている。
1999年、ソニー・エナジー・テックと松下電池工業は電解質にゲル状のポリマーを使うリチウムイオンポリマー電池を商品化した。電解質が液体から準固体のポリマーに変更できたことで薄型化・軽量化が可能になり、さらに、外力や短絡、過充電などに対する耐性も向上した。外装も、従来の鉄やアルミニウムの缶ではなく、レトルト食品に使用されるアルミラミネートフィルムなど簡易なもので済むようになった。主にモバイル電子機器用として2000年代に急速に普及し、現在ではスマートフォンや携帯電話に使われる電池はほぼすべてリチウムイオンポリマー電池である。2010年代にはウェアラブル機器やドローンなどの新興産業にも利用が広がっている。
2008年、東芝は負極にチタン酸リチウム(Li4Ti5O12)を用いるリチウムイオン電池を商品化した。炭素材料と比較して、安全、長寿命、急速充電、低温動作といった特徴があるが、黒鉛よりも電位が約1.5V高いため単セルの電圧が低くなることやエネルギー密度がやや低いといった側面がある。現在は、自動車用(搭載例:スズキ・ワゴンR)、産業用、電力貯蔵用など幅広い分野で利用されている。
リチウムイオン電池は自動車用としても普及が進んでおり、2009年頃から本格的にハイブリッドカーに利用され始めた。以降続々と採用車が増え、ホンダ・フィットハイブリッドやトヨタ・プリウスなどの人気車種にも採用されるようになった。自動車用リチウムイオン電池は、自動車メーカーと電池メーカーの合弁会社(プライムアースEVエナジー、オートモーティブエナジーサプライ、リチウムエナジージャパン、ブルーエナジー)の他、パナソニックや東芝などの電機メーカー、日立ビークルエナジーなどが供給している。またトヨタ、日産、ホンダなど自動車メーカーでも研究開発が進んでおり、開発段階ではあるが電解質に固体材料を使う全固体リチウムイオン電池が次世代二次電池として注目されている。ハイブリッドカーや電気自動車の普及に伴い自動車用リチウムイオン電池の市場規模は2015年現在も拡大傾向にある。
リチウムイオン電池はかつては日本メーカーのシェアが高く、9割以上を占めた時代もあった。三洋電機、三洋GSソフトエナジー、ソニー、パナソニック エナジー社、日立マクセル、NECトーキンなどが主なメーカーとして知られている。一方、韓国(サムスンSDI、LG化学)、中国 (BYD)、台湾などで生産量が増えてきている[43]。朝日新聞によると世界市場シェアについては三洋電機を含めてパナソニック26%、韓国サムスン20%、韓国LG14%、ソニー11%、中国BYD6%、その他23%となっている。2013年の統計では、サムスンがトップ、国別でも韓国が一位であるが、需要が電子機器から自動車に移ってきており、現在の投資状況からすると、将来的には日本メーカーが逆転する勢いにある。
2014年、ジョン・グッドイナフ、西美緒、ラシド・ヤザミ(英語版)、吉野彰の4名はリチウムイオン二次電池を発明した業績が評価され「工学分野のノーベル賞」と呼ばれるチャールズ・スターク・ドレイパー賞を受賞した。
現在、リチウムイオン二次電池(LIB)は携帯電話、ノートパソコン、デジタルカメラ・ビデオ、携帯用音楽プレイヤーを始め幅広い電子・電気機器に搭載され、2010年にはLIB市場は1兆円規模に成長した[44]。小型で軽量なLIBを搭載することで携帯用IT機器の利便性は大いに増大し、迅速で正確な情報伝達とそれにともなう安全性の向上・生産性の向上・生活の質的改善などに多大な貢献をしている。また、LIBは、エコカーと呼ばれる自動車 (EV、HV、P-HV) などの交通機関の動力源として実用化が進んでおり、電力の平準化やスマートグリッドのための蓄電装置としても精力的に研究がなされている。
一口にリチウムイオン電池と言っても様々な種類があり、正極、負極、電解質の材料の組み合わせによって性能が変化する。一般的に普及しているものを大雑把に分類すると次のようになる[7][45]。なお、添加剤の工夫や電極のコーティングなどによっても性能や安全性は向上するため実際はより複雑である。
正極 | 負極 | 電圧 | エネルギー密度 ① Wh/kg ② Wh/L |
充放電速度 ① 充電速度 ② 放電速度 |
使用温度範囲 ① 充電時 ② 放電時 |
サイクル寿命 | 安全性 ① 加熱での熱暴走温度 ② 過充電での熱暴走温度 ③ 釘刺しでの熱暴走 ④ 釘刺しでのガス発生 |
用途 | メーカー |
---|---|---|---|---|---|---|---|---|---|
コバルト酸リチウム LiCoO2 |
黒鉛 | 3.6-3.7 V | ① 150-240 | ① 0.7-1 C ② 1 C |
① 0 ℃ 〜 45 ℃ ② -20℃ 〜 60℃ |
500-1000 | ① 188℃→527℃(発煙、発火) ② 110℃→317℃(発煙、発火) ③ あり ④ H2、CO、CO2、HF(微量) |
携帯電話 スマートフォン タブレット ノートパソコン デジタルカメラ ウェアラブル機器 ドローン |
ソニー パナソニック 他多数 |
1991年に商品化され、主にモバイル機器用に広く普及している。コバルトが高価で価格変動が大きいことが課題とされている。熱暴走リスクがあるため自動車用にはほとんど採用されていない。 | |||||||||
マンガン酸リチウム (スピネル構造) LiMn2O4 |
黒鉛 | 3.7-3.8 V | ① 100-150 | ① 0.7-3 C ② 1-10 C |
② -20℃ 〜 50℃ | 300-700 | ① 283℃→474℃(発煙) ② 103℃→555℃(発煙) ③ なし ④ なし |
携帯電話 電動工具 医療機器 自動車 |
NEC サムスンSDI LG化学 オートモーティブ・エナジー・サプライ リチウムエナジージャパン 日立ビークルエナジー サフト |
1996年に商品化され、近年は特に自動車用として広く普及している。結晶構造が比較的強固なため熱安定性が高い。材料のマンガンはコバルトの1/10以下の価格である。サイクル寿命と高温でのマンガンの溶出が課題だったが、近年は改良されている。 | |||||||||
リン酸鉄リチウム (オリビン構造) LiFePO4 |
黒鉛 | 3.2-3.3 V | ① 90-120 | ① 1 C ② 1-25 C |
② -20℃ 〜 60℃ | 1000-2000 | ① 186℃→267℃(発煙) ② 109℃→179℃(発煙) ③ なし ④ HF(微量) |
電動工具 電動自転車 蓄電システム |
ソニー BYD |
近年、アメリカや中国で採用が増えている。材料は安いが、製造コストがやや高い。結晶構造が強固なため熱安定性が高い。電気伝導性が低いことが課題とされていたが、活物質の微細化と表面の炭素コートの採用により改良されている。 | |||||||||
三元系(NMC系) LiNixMnyCozO2 |
黒鉛 | 3.6-3.7 V | ① 150-220 | ① 0.7-1 C ② 1-2 C |
② -20℃ 〜 60℃ | 1000-2000 | ① 242℃→429℃(発煙、発火) ② 105℃→606℃(発煙、発火) ③ あり ④ H2、CO、CO2、HF(微量) |
電動自転車 医療機器 自動車 産業 |
三洋電機 リチウムエナジージャパン ブルーエナジー |
三元系は、ニッケル、マンガン、コバルトの三元素を使用するもので、2000年に日本とアメリカで開発された。 | |||||||||
ニッケル系(NCA系) LiNixCoyAlzO2 |
黒鉛 | 3.6 V | ① 200-260 | ① 0.7 C ② 1 C |
② -20℃ 〜 60℃ | 500 | 医療機器 自動車 産業 |
プライムアースEVエナジー | |
元々ニッケル酸リチウム(LiNiO2)はコバルト酸リチウム以上に高いエネルギー密度を持つことが知られていたが、安全性に課題があり実用化は難しかった。NCA系では、ニッケルベースに構造安定化のためにコバルトを、耐熱性の改善のためにアルミニウムを添加し、また負極にもセラミック層をコーティングすることにより耐熱性を高め安全化している。 | |||||||||
マンガン酸リチウム | チタン酸リチウム Li4Ti5O12 |
2.4 V | ① 70-80 | ① 1-5 C ② 10-30 C |
② -30℃ 〜 60℃ | 3000-7000 | ① 300℃まで熱暴走なし ③ なし |
自動車 産業 蓄電システム |
東芝 |
2008年に東芝により商品化された。東芝のSCiBは、外力などで内部短絡が生じても熱暴走が起きにくい、充放電10000回以上の長寿命、6分間での急速充電、キャパシタ並みの入出力密度、寒冷地(-30℃)でも使用可能、などの特徴があるとしている。 |
代表的な構成では、負極に炭素、正極にコバルト酸リチウムなどのリチウム遷移金属酸化物、電解質に炭酸エチレンや炭酸ジエチルなどの有機溶媒 + ヘキサフルオロリン酸リチウム (LiPF6) といったリチウム塩を使う。しかし一般には、負極、正極、電解質それぞれの材料は、リチウムイオンを移動し、かつ電荷の授受により充放電可能であればよいので、非常に多くの構成をとりうる。
リチウム塩には LiPF6 の他、LiBF4 などのフッ素系錯塩、LiN(SO2Rf)2・LiC(SO2Rf)3 (ただしRf = CF3,C2F5)、などの塩も用いられる。
また、通常、電解液に高い導電率と安全性を与えるため、炭酸エチレン・炭酸プロピレンなどの環状炭酸エステル系高誘電率・高沸点溶媒に、低粘性率溶媒である炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル等の低級鎖状炭酸エステルを用い、一部に低級脂肪酸エステルを用いる場合もある。
リチウムイオン電池内の電気化学反応は正極、負極、電解質によって構成される。正極と負極はどちらも材料内にリチウムイオンがもぐり込むことが出来る。リチウムが正極や負極内部に移動する事をインサーションあるいはインターカレーションと呼び、逆にリチウムが出て行く事をエクストラクションまたはデインターカレーションと呼ぶ。電池内では充電時にリチウムは正極から出て負極に入る。放電時には逆にリチウムは負極から出て正極に入る。
作動時に外部の回路へ電子が流れる。化学式での単位はモルで記述できるように係数xを使用する[46]。
正極での反応は
負極での半分の反応は
全体的な反応は限界がある。過放電によりリチウムコバルト酸化物が過飽和して酸化リチウムの生成に至る[47]。以下の反応が認められる。
5.2 V以上に過充電することによってコバルト (IV) 酸化物が生成することがX線解析で確認される[48]。
リチウムイオン電池内においてリチウムイオンは負極や正極へ運ばれて金属やLixCoO2内のコバルトは充電によってCo3+からCo4+へ酸化され放電によってCo4+からCo3+へ還元される。
なお、当電池を含む二次電池一般では充電中に正極でアノード反応(酸化反応)が進むが、放電中(作動中)を基準と考え、正極をカソード (Cathode)、負極をアノード (Anode) と固定して呼ぶことが多い。
リチウムイオン二次電池のコストは正極材料に使われる希少元素のコバルトがその7割を占めているが、近年、大幅な低コストを目指して正極材料にマンガン、ニッケル、リン酸鉄などを使うものが開発されつつある。(ニッケルは希少元素だがコバルトより安い、マンガンは商業的にレアメタルとされているが厳密には希少元素ではない。)[49][50][51]。
正極材料 | 平均電圧 | 重量毎の容量 | 重量毎のエネルギー |
---|---|---|---|
LiCoO2 | 7000370000000000000♠3.7 V | 7002140000000000000♠140 mA·h/g | 7006186480000000000♠0.518 kW·h/kg |
LiMn2O4 | 7000400000000000000♠4.0 V | 7002100000000000000♠100 mA·h/g | 7006144000000000000♠0.400 kW·h/kg |
LiNiO2 | 7000350000000000000♠3.5 V | 7002180000000000000♠180 mA·h/g | 7006226800000000000♠0.630 kW·h/kg |
LiFePO4 | 7000330000000000000♠3.3 V | 7002150000000000000♠150 mA·h/g | 7006178200000000000♠0.495 kW·h/kg |
Li2FePO4F | 7000360000000000000♠3.6 V | 7002115000000000000♠115 mA·h/g | 7006149040000000000♠0.414 kW·h/kg |
LiCo1/3Ni1/3Mn1/3O2 | 7000360000000000000♠3.6 V | 7002160000000000000♠160 mA·h/g | 7006207359999999999♠0.576 kW·h/kg |
Li(LiaNixMnyCoz)O2 | 7000420000000000000♠4.2 V | 7002220000000000000♠220 mA·h/g | 7006331200000000000♠0.920 kW·h/kg |
ソニーが1990年ごろよりリチウムイオン二次電池の商業生産を開始した当初、負極材料にはグラファイトではなく、グラファイト結晶構造が発達しにくい高分子を焼成して得られるハードカーボンが用いられた。
グラファイトとハードカーボンの放電特性は、グラファイトが放電初期から放電末期までほぼなだらかな平坦に近い電圧での放電をし、放電末期に急激に電圧を降下させるのに対し、ハードカーボンの場合は放電終了電圧まで均一に電圧が降下していくという異なる特徴を持つ。
このためハードカーボンでは電圧を測定することにより電池の容量を直接・正確に知ることができるが、電池電圧が安定しない欠点がある。これに対し、グラファイトでは電圧変化が少ないため電池電圧から電池の容量を知ることはできないが、放電末期まで安定して高い電圧を保つ利点がある。
ハードカーボンを使うものは1000回を越すサイクル特性を持つなど優れた点があるものの、そのままでは均一な電圧が得られないため、低電圧領域ではDC-DCコンバーターなどで昇圧する必要がある。そのため周辺回路が高価となってしまい、現在ではハードカーボン系の電池は一部の機器だけに用いられているのみとなっている。また、グラファイト、ハードカーボンに代わる次世代の材料として、スズ、ケイ素材料が実用化され始めている。これらはリチウムとの合金化反応により、グラファイトの数倍から数十倍の容量を示すことが知られていたが、体積変化が激しく寿命を延ばすことが困難であった。現在は炭素材料などとの複合化により容量と寿命を両立している。
東芝は、負極材料に炭素系材料ではなく酸化物系材料としてチタン酸リチウム (LTO) を採用したリチウムイオン二次電池「SCiB」を開発しており、これは安全性が高く、低温特性に優れ、約6,000回以上の充放電サイクルが可能であるとされる[52]。
負極材料 | 平均電圧 | 重量毎の容量 | 重量毎のエネルギー |
---|---|---|---|
黒鉛 (LiC6) | 6999100000000000000♠0.1–0.2 V | 7002372000000000000♠372 mA·h/g | 6998372000000000000♠0.0372–0.0744 kW·h/kg |
ハードカーボン (LiC6) | ? V | ? mA·h/g | ? kW·h/kg |
チタネイト (Li4Ti5O12) | 7000100000000000000♠1–2 V | 7002160000000000000♠160 mA·h/g | 7005576000000000000♠0.16–0.32 kW·h/kg |
Si (Li4.4Si)[53] | 6999500000000000000♠0.5–1 V | 7003421200000000000♠4212 mA·h/g | 7006758160000000000♠2.106–4.212 kW·h/kg |
Ge (Li4.4Ge)[54] | 6999700000000000000♠0.7–1.2 V | 7003162400000000000♠1624 mA·h/g | 7006409320000000000♠1.137–1.949 kW·h/kg |
水溶液系電解質はリチウムによって電気分解することから使えず、非水溶液系電解質が使用される。リチウムイオン電池内の液状の電解質はLiPF6,LiBF4あるいはLiClO4のようなリチウム塩とエチレンカーボネートのような溶媒によって構成される。液体の電解質は正極と負極の間に満たされ充放電によってリチウムイオンが移動する。一般的に室温 (7001200000000000000♠20 °C) での電解質の導電性は 7000100000000000000♠10 mS/cm (7000100000000000000♠1 S/m) で 7001400000000000000♠40 °Cではおよそ6999300000000000000♠30%–40%で5000000000000000000♠0 °C付近ではさらに下がる[55]。
しかし有機溶媒は正極で分解、変質しやすい。適切な有機溶媒を電解質に用いているにもかかわらず本質的に溶媒は分解し、相間固体電解質(SEI)と呼ばれる固体の層に変化する[56]。これはリチウムイオンの導電性を妨げる。相間は充電後の電解質の分解を防止する。一例としてエチレンカーボネートはリチウムより6999700000000000000♠0.7 V高電圧で分解し高密度で相間は安定である。
正極電極は、アルミニウム箔の両面にコバルト酸リチウムなどの活物質溶液を塗布・乾燥した後、プレスして密度を上げ製作する。負極電極は銅箔に炭素材料などの溶液を塗布・乾燥した後、プレスして密度を上げ製作する。
電極材料は、長い帯状で製造される電極箔に対して横向きの縞状に間欠塗布され、製品となる電池の大きさや形に合わせて裁断される。このうち、電極材料が塗布されていない部分は、電力を入出力するための接続端子(タブ)が溶接される部分になる。正極にはアルミタブ、負極にはニッケルタブが用いられる。
負極と正極の間にはイオンが移動できる多孔質の絶縁フィルムをはさみ、バウムクーヘンの様に正極と負極と絶縁フィルムが幾層にも重なるように巻く。
電池の形状が円筒形の場合、電極は円筒形に巻かれてニッケルメッキされた鉄製の缶に入れられる。負極を缶底に溶接して電解液を注入後、正極を蓋(トップキャップ)に溶接し、プレス機で食品缶詰缶の様に封口する。
角型電池の場合、電極は缶に合わせて扁平形に巻かれ、アルミ外装缶に正極が溶接される。また、角型の場合レーザー溶接で封口する。
電池組み立て完成後、活性化工程で充電することにより電池を活性化させ、充電・放電・室温放置エージング・高温放置エージング等を何度か繰り返し、電池選別のスクリーニングを行い出荷に至る。
円筒型リチウムイオン二次電池の規格(サイズ)は、直径(mm単位で2桁)+ 長さ(6996100000000000000♠0.1 mm単位で3桁)の計5桁の数字で表される。 2013年現在、市場に流通している円筒型電池の規格としては、26650/18650/17670/18500/18350/17500/16340/14500/10440のものが存在している。なお、14500はいわゆる単三型乾電池に10440では単四型乾電池に相当するサイズになる。
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年11月) |
この節には独自研究が含まれているおそれがあります。問題箇所を検証し出典を追加して、記事の改善にご協力ください。議論はノートを参照してください。(2010年10月) |
常用領域と危険領域が非常に接近していて、安全性確保のために充放電を監視する保護回路が必要である。これは、充電時に電圧が上昇する際に、正極および負極が極めて強い酸化状態・還元状態に置かれ、他の低電圧の電池に比べて材料が不安定化しやすいためである。
急速あるいは過度に充電すると、正極側では電解液の酸化・結晶構造の破壊により発熱し、負極側では金属リチウムが析出する。これにより両極が直接繋がり、回路がショートしてしまう。電池を急激に劣化させるだけでなく、最悪の場合は破裂・発火する[58]。したがって、充電においては極めて高い精度(数十 mVのレベル)での電圧制御が必要である。
過放電では、正極のコバルトが溶出したり、負極の集電体の銅が溶出してしまい二次電池として機能しなくなる。この場合も、電池の異常発熱に繋がる。コバルト酸リチウムは可燃性が高いため、一度燃え上がると電池に含まれる酸化剤に燃え移るため、手がつけにくい。
エネルギー密度が高いために、短絡時には急激に過熱する危険性が大きく、有機溶剤の電解液が揮発し、発火事故を起こす恐れがある。短絡は外力が加わることで電池内部で発生する場合もあり、衝撃に対する保護も必要である。
保存特性(保存状態での性能保持特性)はニッケル水素電池などより劣る。また、満充電状態で保存すると電池の劣化は急激に進行する。このため、他の蓄電池で一般的な充電方法であるトリクル充電はリチウムイオン電池には適していない。また高い発熱特性、制御回路と保護回路が必須、1セルあたりの電圧が高いなどの理由から、乾電池の代替用途には不向きであり普及していない。(ニッケル・水素充電池#概要も参照)
リチウムイオン二次電池は金属リチウムを用いないため、リチウム二次電池より安全に充放電できるように設計されている。しかし、リチウムイオン二次電池の危険性は、エネルギー密度の高さの裏返しであり本質的な問題でもあるため、電池そのものにも周辺回路にも様々な安全対策が施されている。これらの安全対策は特許公報などにより知ることができる。
こうした対策にもかかわらずノートパソコンや携帯電話において異常過熱や発火などがしばしば報告される。製造工程上の問題が疑われ、大規模な回収に繋がった例もある。具体的な事故例についてはリチウムイオン二次電池の異常発熱問題を参照のこと。
利用法によっては発火・爆発する危険性があるため、市販時には複数の安全機構を内蔵した「電池パック」として供給され、マンガン電池やアルカリ電池のように電池セル単体の製品は市販されていない。ラジコン等のホビー用途の電源として、電子的な安全回路を持たない物が市販されているが、高価な専用充放電機での使用を前提としており、強固なケースに収められている。
例外的に、電子部品専門店などでは一般向けに電池セルを販売しているが、保護回路や短絡防止策を講じないで使用することは危険を伴う。また、ユーザーが電池パックを分解することは非常に危険である。
日本国内のウェブショップでは日本製と海外製の電子的な安全回路を内蔵した製品と電子的な安全回路を持たない製品が市販されている。主に18650/17650/14500/10440等が電池セル単体で、1本¥900円位から¥2,000円位で入手が可能である。
内部短絡などで温度が上がり、内圧が上昇した場合には電流遮断機能付き安全弁を内蔵することで爆発を予防している。この安全弁は正極の凸部にあり、一定以上の圧力がかかるとガスを外部に放出する。また、円筒形電池のトップカバーには、温度上昇により内部抵抗が増大するPTC素子が内蔵されており、温度上昇が起こった際には電流を電気的に遮断する構造になっている。
その他に、
などの様々な方法を用いてメーカーは安全性の確保に努めている。
充電電圧の過充電制御は充電器だけでなく、電池パックにも制御回路を備えて管理している。また、過放電に対しては電池パック内の制御回路により、過放電状態にいたる前に出力を遮断する。
長持ちさせるために留意すると良い点を記す。
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年11月) |
リチウムイオン二次電池の利点はニッケル水素二次電池に対する圧倒的なエネルギー密度の高さであり、リスクを甘んじるに相応の性能であった。だが、リチウムイオンが2000年代極初期に発生した一連の異常発熱・発火問題に対する対策に追われている間に、高性能化に開発リソースをつぎ込むことが可能であったニッケル水素は、容積比で1/2、重量比で1/3という「直接比較できるレベル」にまで性能差を縮めている。元々ニッカド電池のように強いウィークポイントではなかったメモリ効果も、さらに抑制する技術が開発されている。ニッケル水素二次電池は構造上、極端な小型化が難しいことから、リチウムイオン電池の市場は依然として確保されているものの、その一方で動力用や乾電池(一次電池)の互換型充電式電池といった、現在ニッケル水素電池が主流を占める用途について、リチウムイオン電池がこれに取って代わることは、不可能になりつつある。
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2015年11月) |
まだアイデアの域を出ないものの「カルシウムイオン電池」というのも研究されている(一般乗用車に搭載されているカルシウム電極電池、通称「MFバッテリー」とは異なる)。この電池は電池の電圧がリチウムイオン電池よりやや落ちる(理論電圧は満充電で7000350000000000000♠3.5 V程度)が、リチウムイオン 7000100000000000000♠1 mol を両極間でやりとりするのに対してカルシウムイオン 1mol を両極間でやりとりする場合、2倍の電流密度が得られる(2価のため)という強みがある。電解液には Ca(ClO4)2、Ca2[Fe(CN)6] などを非プロトン極性溶媒に溶解した液を用いる。電極材料としてはCaMn2O4/MoS2系が有望視されている。そのほか、マグネシウムやナトリウムを使うアイデアもある。
ナノワイヤーバッテリーはリチウムイオン充電池の一種で2007年にスタンフォード大学のYi Cuiによって発明された。彼のチームの発明は従来の黒鉛の負極を珪素のナノワイヤーによって覆われたステンレスの負極で置き換える構成である。珪素は黒鉛の10倍のリチウムを貯蔵するので負極でのエネルギー密度が遥かに向上するため充電池の体積を減らす事が出来る。表面積が広いので充放電が早くなる。
従来の炭素系負極を大きく超える容量を持つ事から珪素負極が研究(一部実用化)されているが、リチウムイオンの出入りによって珪素が数倍の体積に膨らむことから亀裂を生じやすく、充放電を繰り返した際の劣化(容量低下)を起こしやすい点が問題である。
さて、材料をナノサイズ化すると一般的に体積変化に対する柔軟性が増す事が知られている。このため現在研究されている珪素系負極はほぼ全て珪素をナノ粒子化し、それを導電性炭素などで繋いだ構造となっている。これに対し、スタンフォード大のCui博士のグループが開発した珪素ナノワイヤー系負極は、非常に長いナノワイヤーを電極として利用する事で電極末端までの電子の流れをスムーズにし、体積変化による劣化はワイヤー径がナノサイズである事で回避、さらにその非常に大きな表面積のためにLiイオンの侵入も容易で高速での充放電を可能とした。彼らの実験結果によれば、既存の炭素系負極に対し初期容量で10倍、その後の充放電でも8倍程度の容量を維持している[65]。
なお、彼のグループはその後も様々なナノ材料を用いた電極開発を行っており、2011年にはナノワイヤー状の炭素により覆われた硫黄を作成し、正極材料としての優れた特性を報告している[66]。硫黄正極は現在使われているLiCoO2やLiFePO4といった正極材料の10倍程度の容量(単位重量あたり)を実現可能であり特に韓国系メーカーが中心となって開発を進めているのだが、サイクル特性が悪く充放電により急速に劣化する点が問題となっている。彼らの作成した炭素被覆硫黄ナノワイヤー正極では、炭素により覆われる事で硫黄の溶け出しを防止する事でサイクル特性が向上、約150回の充放電後でも700 mAh/gと非常に大きな容量が維持されている。
ただしこれら十分に制御されたナノ構造を量産段階の電池に応用するにはまだ困難も多く、こういった技術が即座に製品として市場に出回るわけでは無い。
リン酸鉄リチウムイオン電池はリチウムイオン電池の一種である。正極材料にリン酸鉄リチウム(LiFePO4)を使用する。LiFe、Li-Fe、リフェ、リチウムフェライトバッテリーなどと呼ばれる[67][68][69]。
正極材料にコバルトを使用する形式よりも資源的な制約が少なく[70]、安全域が広く釘差しなどでも発火しにくい[71]などの特徴をもち、他の正極材料を用いたリチウムイオン電池より比較的安全である事から近年シェアを拡大している。代表的なメーカーはA123Systems、Changs Ascending Enterprise Co.,Ltd.(CAEC)、China Sun Group、BYDである。リン酸鉄リチウムイオン電池では従来のリチウムイオン電池とは異なる特徴がある。競合するコバルト酸リチウムイオン電池と比較した場合、放電できる電流が少ないが、燐酸鉄リチウムの一部の元素を置換することによって放電できる電流を改善した事例もある[72]。
リン酸鉄リチウムイオン電池は以下の特徴がある
例: リン酸鉄リチウムイオン電池とコバルト酸リチウムイオン電池の1年後のエネルギー密度は、ほぼ同程度である。
LiFePO4は元々正極材料がLiCoO2やスピネル系マンガンよりも安全である[77]。Fe-P-Oの結合はCo-O間の結合よりも強力である。その為短絡や過熱等でも酸素原子が離脱するのは困難である。この酸化還元エネルギーの安定性はイオンの移動を助ける。(7002800000000000000♠800 °C以上の)加熱下において焼け落ちるだけでLiCoO2が同様の条件下において熱暴走する可能性があるのに対して結合の安定性はその危険性を減少させる。
リチウムがLiCoO2電池の正極からでる事でCoO2は非線形な膨張を受け構造の整合性に影響を与える。LiFePO4もリチウムの出入りによって同様に構造に影響があるがLiFePO4電池はLiCoO2電池より安定した構造である。
完全に充電された時はLiFePO4電池は正極にリチウムがないがLiCoO2電池の場合はおよそ50%正極に残る。
2012年、リン酸鉄リチウムイオン電池を採用した電気自動車、BYD・e6が交通事故を起こし炎上。炎上の原因にリチウムイオン電池が関与した可能性が、BYD幹部より示唆されている[78]。
1993年に日本電信電話(NTT)からテキサス大学のジョン・グッドイナフ研究室に研究員として派遣された職員が機密保持に関する契約に反して、リン酸鉄リチウム電池に関する機密情報を自分の勤務先に漏洩し、1995年11月、NTTが密かに特許を出願して日本の電子機器メーカーに売り込みをはじめた。
テキサス大学はNTTに対して5億ドルの損害賠償訴訟を起こしたが、結果的にNTTがテキサス大学に3000万ドルを支払い、日本での特許から生じる利益の一部も大学に譲渡する内容で和解が成立した[79]。
電動工具や電気自動車、エアソフトガン、ラジコン等に使用される。
[ヘルプ] |
This article uses material from the Wikipedia article "リチウムイオン二次電池#リン酸鉄リチウムイオン電池", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
Car, Truck,MotorBike, Bicycle, Engine, Racer, Bus