Licensed under Creative Commons Attribution-Share Alike 3.0 (Unkown).
この項目では、物理学での反射について説明しています。生物学での反射については「反射 (生物学)」をご覧ください。 |
物理学 |
---|
ウィキポータル 物理学 執筆依頼・加筆依頼 |
カテゴリ |
物理学 - (画像) |
ウィキプロジェクト 物理学 |
反射(はんしゃ、英語: reflection)は、光や音などの波がある面で跳ね返る反応のことである。
ひもや弦などを振動させると、その波は周囲に伝わっていく。その時終端において反射が起きる。反射は終端によって2種類に分けられる。
電気のパルス波を金属の通信路にいれると、通信路の終端において、パルス波が反射する。
この時、最適な電気抵抗を終端に入れることにより、反射を防ぐことができ、最適な通信が可能となる(終端抵抗、ターミネータ)。
光などの電磁波は、屈折率が異なる物質間の境界面で、入射光の一部または全部が反射される。ここで、反射する光の入射角と反射角は等しいという、反射の法則が成り立つ。入射角と反射角は、それぞれの光の進行方向と境界面の垂線との間の角度として定義される。説明図における左の α が入射角、右の α が反射角である。なお、歴史的な事情から電気工学から発展した電磁気学においては、この入射角と反射角が反射面に対する角度として定義されることがある。ただ、いずれにしても入射角と反射角が等しいということに変わりはない。
完全に滑らかな面では一定の方向から入射した光は一定の方向に反射するが、現実の物体では必ずしもそうなっていない。完全に滑らかではない物体における反射を表すモデルとして、光学分野やコンピュータグラフィックスでは、双方向散乱面反射率分布関数や双方向反射率分布関数など、さまざまな反射モデルが利用されている。
屈折率が異なる物質間の境界面に光が入射したときには、一定の条件を満たすように、反射光と透過光(屈折光)が生じる。この「一定の条件」とは、「波動ベクトルの境界面に平行な成分は、各光において等しい」「電界(電場)・磁界(磁場)の境界面に平行な成分は、境界面の両側で等しい」「電束密度・磁束密度の境界面に垂直な成分は、境界面の両側で等しい」である。反射角・屈折角に関する法則(スネルの法則)や、反射率・透過率に関する法則(フレネルの式)は、この原理から導出される。
ウィキメディア・コモンズには、反射に関連するカテゴリがあります。 |
This article uses material from the Wikipedia article "反射", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD