Licensed under Creative Commons Attribution 3.0 (User:WerWil).
Возду́шный винт (пропе́ллер) — лопастной агрегат работающий в воздушной среде, приводимый во вращение двигателем и являющийся движителем, преобразующим мощность (крутящий момент) двигателя в действующую движущую силу тяги. В.винты, выполняющие (помимо функций движителя), дополнительные, либо иные функции, имеют специальные названия: ротор, маршевый винт, несущий винт (винтокрылых летательных аппаратов), рулевой винт, фенестрон, импеллер, вентилятор, ветряк, винтовентилятор.
В. В. работающий в качестве движителя, в сочетании с двигателем образуют винтомоторную установку (ВМУ) — входящую в состав силовой установки используемой для: летательных аппаратов (самолётов, автожиров, цикложиров, экранопланов); водных самоходных средств (аэроглиссеров, СВП); наземных транспортных средств (аэросаней).
Воздушный винт применяется в качестве движителя для самолётов, автожиров, цикложиров (циклокоптеров) и вертолётов с поршневыми и турбовинтовыми двигателями, а также в том же качестве — для экранопланов, аэросаней, аэроглиссеров и судов на воздушной подушке. У автожиров и вертолётов воздушный винт применяется также в качестве несущего винта, а у вертолётов ещё и в качестве рулевого винта. В зависимости от наличия возможности изменения шага лопастей воздушный винт подразделяются на винты фиксированного и изменяемого шага. В зависимости от способа использования воздушные винты делятся на тянущие и толкающие.
Лопасти винта, вращаясь, захватывают воздух и отбрасывают его в направлении, противоположном движению. Перед винтом создаётся зона пониженного давления, за винтом — повышенного. Вращение лопастей воздушного винта приводит к разворачивающему эффекту, воздействующему на летательный аппарат, причины которого в следующем:
Реактивный момент винта. Любой воздушный винт, вращаясь в одну сторону, стремиться накренить самолет или развернуть вертолёт в противоположную сторону. Именно из-за этого возникает асимметрия при поперечном управлении самолётом. Например, самолет с винтом левого вращения совершает развороты, перевороты и бочки вправо гораздо легче и быстрее, чем влево. Этот же реактивный момент является одной из причин неуправляемого разворота самолета вбок в начале разбега.
Закручивание струи винта. Воздушный винт закручивает воздушный поток, что также вызывает несимметричную обдувку плоскостей и хвостового оперения справа и слева, различную подъёмную силу крыла справа и слева и разницу в обдуве управляющих поверхностей. Несимметричность потока хорошо видно при авиационных химработах на примере распыляемого вещества.
Гироскопический момент винта. Любое быстровращающиеся тело имеет гироскопический момент (эффект волчка), заключающиеся в стремлении сохранении своего положения в пространстве. Если принудительно заставить ось вращения гироскопа наклониться в какую-либо сторону, например вверх или вниз, то она не просто будет противодействовать этому отклонению, а будет уходить в направлении, перпендикулярном произведенному воздействию, то есть в данном случае вправо или влево. Так, при изменении в установившемся полёте угла тангажа самолёт будет стремиться самостоятельно поменять курс, а при начале разворота возникает стремление к самостоятельному изменению угла тангажа.
Все три причины разворота — реактивный момент, действие струи и гироскопический момент винта всегда действуют в одну сторону: при винте левого вращения разворачивают самолет вправо, а при винте правого вращения — влево. Этот эффект проявляется особенно сильно на мощных одномоторных самолётах при взлёте, когда самолёт движется с небольшой поступательной скоростью и эффективность воздушных рулей низкая. С ростом скорости разворачивающий момент ослабевает ввиду резкого увеличения эффективности рулей.
Для компенсации разворачивающего момента все самолёты делают несимметричными - как минимум, отклоняют руль направления от строительной оси самолёта.
Данного недостатка лишены соосные воздушные винты (кроме гироскопического эффекта).
Реактивный и гироскопический момент также присущ всем турбореактивным двигателям и учитывается в конструкции самолёта. Для компенсации реактивного момента винта вертолёта приходится применять рулевой винт, предотвращающий вращение фюзеляжа.
Определяющими являются диаметр и шаг винта. Шаг винта соответствует воображаемому расстоянию, на которое передвинется винт, ввинчиваясь в несжимаемую среду за один оборот. Существуют винты с возможностью изменения шага как на земле, так и в полёте. Последние получили распространение в конце 1930-х годов и применяются практически на всех самолётах, кроме некоторых сверхлёгких, и вертолётах. В первом случае изменение шага требуется из-за необходимости получения большой тяги в широком диапазоне скоростей при мало изменяющихся (или неизменных) оборотах двигателя, соответствующих максимальной мощности, во втором — из-за невозможности быстрого изменения оборотов несущего винта.
КПД воздушного винта называют отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата, к мощности двигателя. Чем ближе КПД к 1, тем эффективнее расходуется мощность двигателя, и тем большую скорость или грузоподъемность может развить ЛА при той же энерговооружённости.
КПД современных воздушных винтов достигает 82-86 %, что делает их очень привлекательными для авиаконструкторов. Самолёты с турбовинтовыми силовыми установками значительно экономичнее, чем самолёты с реактивными двигателями. Однако воздушный винт имеет и некоторые ограничения, как конструктивного, так и эксплуатационного характера. Часть этих ограничений описана ниже.
Идея воздушного винта происходит от архимедова винта.
Известен чертеж Леонардо Да Винчи с изображением прообраза вертолета с несущим винтом. Винт всё ещё выглядит как архимедов.
В июле 1754 Михаил Ломоносов провел демонстрацию аэродромической модели. На ней лопасти уже уплощены, что приближает их к современному виду. Предполагается, что Ломоносов использовал образ китайской детской игрушки - бамбукового вертолётика.
Авиаконструкторы идут на определённые технические ухищрения, чтобы такой эффективный движитель, как воздушный винт, нашёл место на самолётах будущего.
This article uses material from the Wikipedia article "Воздушный винт", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
3D,CAD,Model,Libary,Railway, Train, Ship, Marine, Submarine, Automotive, Locomotive, Bike, Car, Formula 1, Space, Aircraft, Aerospace, Satelite, Automobile, Yacht