Go to Article

## 複阻抗

1. 直角形式：${\displaystyle R+jX}$
2. 極形式：${\displaystyle Z_{m}\angle \theta }$
3. 指數形式：${\displaystyle Z_{m}e^{j\theta }}$

${\displaystyle R=Z_{m}\cos \theta }$
${\displaystyle X=Z_{m}\sin \theta }$

${\displaystyle Z_{m}={\sqrt {R^{2}+X^{2}}}}$
${\displaystyle \theta =\arctan(X/R)}$

## 歐姆定律

${\displaystyle v=iZ=iZ_{m}e^{j\theta }}$

## 複值電壓與電流

${\displaystyle v(t)=V_{m}e^{j(\omega t+\phi _{V})}}$
${\displaystyle i(t)=I_{m}e^{j(\omega t+\phi _{I})}}$

${\displaystyle Z\ {\stackrel {def}{=}}\ {\frac {v(t)}{i(t)}}}$

{\displaystyle {\begin{aligned}V_{m}e^{j(\omega t+\phi _{V})}&=I_{m}e^{j(\omega t+\phi _{I})}Z_{m}e^{j\theta }\\&=I_{m}Z_{m}e^{j(\omega t+\phi _{I}+\theta )}\\\end{aligned}}}

${\displaystyle V_{m}=I_{m}Z_{m}}$
${\displaystyle \ \phi _{V}=\phi _{I}+\theta }$

${\displaystyle V=V_{m}e^{j\phi _{V}}}$
${\displaystyle I=I_{m}e^{j\phi _{I}}}$

${\displaystyle v(t)=Ve^{j\omega t}}$
${\displaystyle i(t)=Ie^{j\omega t}}$

${\displaystyle Z\ {\stackrel {def}{=}}\ {\frac {V}{I}}}$

### 複數運算的正確性

${\displaystyle \cos(\omega t+\phi )={\frac {1}{2}}{\Big [}e^{j(\omega t+\phi )}+e^{-j(\omega t+\phi )}{\Big ]}}$

${\displaystyle \cos(\omega t+\phi )=\mathrm {Re} {\Big \{}e^{j(\omega t+\phi )}{\Big \}}}$

## 電路元件的阻抗

${\displaystyle Z_{R}=R}$

${\displaystyle Z_{C}={\frac {1}{j\omega C}}}$
${\displaystyle Z_{L}=j\omega L}$

${\displaystyle j=e^{j\pi /2}}$
${\displaystyle -j=e^{-j\pi /2}}$

${\displaystyle Z_{C}={\frac {e^{-j\pi /2}}{\omega C}}}$
${\displaystyle Z_{L}=\omega Le^{j\pi /2}}$

### 電阻器

${\displaystyle v_{R}(t)=i_{R}(t)R}$

${\displaystyle v_{R}(t)=V_{0}\cos(\omega t)=V_{0}e^{j\omega t},\qquad V_{0}>0}$ ，

${\displaystyle i_{R}(t)={\frac {V_{0}}{R}}e^{j\omega t}}$

${\displaystyle Z_{R}=R}$

### 電容器

${\displaystyle i_{C}(t)=C{\frac {\operatorname {d} v_{C}(t)}{\operatorname {d} t}}}$

${\displaystyle v_{C}(t)=V_{0}\sin(\omega t)=\operatorname {Re} \{V_{0}e^{j(\omega t-\pi /2)}\}=\operatorname {Re} \{V_{C}e^{j\omega t}\},\quad where\quad V_{0}>0,\quad V_{C}=V_{0}e^{j(-\pi /2)}}$

${\displaystyle i_{C}(t)=\omega V_{0}C\cos(\omega t)=\operatorname {Re} \{\omega V_{0}Ce^{j\omega t}\}=\operatorname {Re} \{I_{C}e^{j\omega t}\}}$

${\displaystyle {\frac {v_{C}(t)}{i_{C}(t)}}={\frac {V_{0}\sin(\omega t)}{\omega V_{0}C\cos(\omega t)}}={\frac {\sin(\omega t)}{\omega C\sin \left(\omega t+{\frac {\pi }{2}}\right)}}}$ 。

${\displaystyle V_{C}=V_{0}e^{j(-\pi /2)},\qquad V_{0}>0}$
${\displaystyle I_{C}=\omega V_{0}Ce^{j0}}$
${\displaystyle Z_{C}={\frac {e^{-j\pi /2}}{\omega C}}}$

${\displaystyle Z_{C}={\frac {1}{j\omega C}}}$

### 電感器

${\displaystyle v_{L}(t)=L{\frac {\operatorname {d} i_{L}(t)}{\operatorname {d} t}}}$

${\displaystyle i_{L}(t)=I_{0}\cos(\omega t)}$

${\displaystyle v_{L}(t)=-\omega LI_{0}\sin(\omega t)=\omega LI_{0}\cos(\omega t+\pi /2)}$

${\displaystyle {\frac {v_{L}(t)}{i_{L}(t)}}={\frac {\omega L\cos(\omega t+\pi /2)}{\cos(\omega t)}}}$

${\displaystyle i_{L}(t)=I_{0}e^{j\omega t},\qquad I_{0}>0}$
${\displaystyle v_{L}(t)=\omega LI_{0}e^{j(\omega t+\pi /2)}}$
${\displaystyle Z_{L}=\omega Le^{j\pi /2}}$

${\displaystyle Z_{L}=j\omega L}$

## 廣義 s-平面阻抗

${\displaystyle j\omega }$ 定義阻抗的方法只能應用於以穩定態交流信號為輸入的電路。假若將阻抗概念加以延伸，將 ${\displaystyle j\omega }$ 改換為複角頻率 ${\displaystyle s}$ ，就可以應用於以任意交流信號為輸入的電路。表示於時域的信號，經過拉普拉斯變換後，會改為表示於頻域的信號，改成以複角頻率表示。採用這更廣義的標記，基本電路元件的阻抗為

## 電抗

${\displaystyle Z_{m}={\sqrt {ZZ^{*}}}={\sqrt {R^{2}+X^{2}}}}$
${\displaystyle \theta =\arctan {\left({\frac {X}{R}}\right)}}$

${\displaystyle X=Z_{m}\sin \theta }$

### 容抗

${\displaystyle X_{C}=-1/\omega C}$

### 感抗

${\displaystyle X_{L}=\omega L}$

${\displaystyle {\mathcal {E}}=-{{\operatorname {d} \Phi _{B}} \over \operatorname {d} t}}$

${\displaystyle {\mathcal {E}}=-N{\operatorname {d} \Phi _{B} \over \operatorname {d} t}}$

## 阻抗組合

### 串聯電路

${\displaystyle Z_{eq}\ {\stackrel {def}{=}}\ Z_{1}+Z_{2}+\cdots +Z_{n}}$

${\displaystyle Z_{eq}=R_{eq}+jX_{eq}=(R_{1}+R_{2}+\cdots +R_{n})+j(X_{1}+X_{2}+\cdots +X_{n})}$

### 並聯電路

${\displaystyle {\frac {1}{Z_{eq}}}\ {\stackrel {def}{=}}\ {\frac {1}{Z_{1}}}+{\frac {1}{Z_{2}}}+\cdots +{\frac {1}{Z_{n}}}}$

${\displaystyle Z_{eq}={\frac {Z_{1}Z_{2}}{Z_{1}+Z_{2}}}}$

${\displaystyle Z_{eq}=R_{eq}+jX_{eq}}$

${\displaystyle R_{eq}={\frac {(X_{1}R_{2}+X_{2}R_{1})(X_{1}+X_{2})+(R_{1}R_{2}-X_{1}X_{2})(R_{1}+R_{2})}{(R_{1}+R_{2})^{2}+(X_{1}+X_{2})^{2}}}}$
${\displaystyle X_{eq}={\frac {(X_{1}R_{2}+X_{2}R_{1})(R_{1}+R_{2})-(R_{1}R_{2}-X_{1}X_{2})(X_{1}+X_{2})}{(R_{1}+R_{2})^{2}+(X_{1}+X_{2})^{2}}}}$

## 測量

### 電橋法

${\displaystyle Z_{x}=Z_{2}Z_{3}/Z_{1}}$

${\displaystyle Z_{x}=|Z_{x}|\angle \theta _{x}=|Z_{2}Z_{3}/Z_{1}|\angle (\theta _{2}+\theta _{3}-\theta _{1})}$

### 諧振法

1. 調整可調電容器的電容 ${\displaystyle C}$ ，使得RLC電路進入共振狀況。用測Q計測量電容器的品質因子 ${\displaystyle Q}$
2. 如右圖所示，將阻抗為 ${\displaystyle Z_{x}}$ 的被測元件串聯於RLC電路，調整可調電容器的電容 ${\displaystyle C'}$ ，使得電路進入共振狀況。用測Q計測量電容器的品質因子 ${\displaystyle Q'}$

${\displaystyle X_{C}+X_{L}=0}$

${\displaystyle {\frac {1}{\omega C}}=\omega L}$

${\displaystyle Q={\frac {|X_{C}|}{R}}={\frac {1}{\omega CR}}={\frac {\omega L}{R}}}$

${\displaystyle X_{C'}+X_{X}+X_{L}=0}$

${\displaystyle X_{X}={\frac {1}{\omega C'}}-\omega L={\frac {1}{\omega C'}}-{\frac {1}{\omega C}}={\frac {C-C'}{\omega CC'}}}$

${\displaystyle Q'={\frac {|X_{C'}|}{R_{X}+R}}={\frac {1}{\omega C'(R_{X}+R)}}}$

${\displaystyle R_{X}={\frac {1}{\omega C'Q'}}-{\frac {1}{\omega CQ}}}$

${\displaystyle Z_{X}=R_{X}+jX_{X}=\left({\frac {1}{\omega C'Q'}}-{\frac {1}{\omega CQ}}\right)+j\left({\frac {1}{\omega C'}}-{\frac {1}{\omega C}}\right)}$

## 參考文獻

1. ^ Alexander, Charles; Sadiku, Matthew, Fundamentals of Electric Circuits 3, revised, McGraw-Hill: pp. 387–389, 2006, ISBN 9780073301150
2. ^ Science, p. 18, 1888
3. ^ Oliver Heaviside, The Electrician, p. 212, 23rd July 1886 reprinted as Electrical Papers, p64, AMS Bookstore, ISBN 978-0-8218-3465-7
4. ^ Katz, Eugenii, 對於電磁學有巨大貢獻的著名科學家：亞瑟·肯乃利, （原始内容存档于2009-10-27）
5. Horowitz, Paul; Hill, Winfield. 1. The Art of Electronics. Cambridge University Press. 1989: 31–33. ISBN 0-521-37095-7.
6. ^ Alexander, Charles; Sadiku, Matthew, Fundamentals of Electric Circuits 3, revised, McGraw-Hill: pp. 829–830, 2006, ISBN 9780073301150
7. ^ Agilent Impedance Measurement Handbook (PDF) 4th, USA: Agilent Technologies: pp.22ff, 2009, （原始内容 (PDF)存档于2011-05-16）
8. Bakshi, V. U.; Bakshi, U. A., Electronic Measurements, Technical Publications: pp. 68ff, 110ff, 2007, ISBN 9788189411756

This article uses material from the Wikipedia article "阻抗", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

### Electrical Engineering

EPLAN, Aucotec, CAE, AutoCAD Electrical, IGE XAO, ElCAD, 2D drawings, 2D symbols, 3D content, 3D catalog, EPLAN Electric P8, Zuken E3, schematics, dataportal, data portal, wscad universe, electronic, ProPanel3D, .EDZ, eClass Advanced, eCl@ss Advanced