Go to Article

## 傅立叶定律

### 微分形式

${\displaystyle {\overrightarrow {q}}=-k{\nabla }T}$

${\displaystyle {\overrightarrow {q}}}$ 是热通量密度，单位W·m−2
${\displaystyle {\big .}k{\big .}}$ 是这种材料的热导率，单位W·m−1·K−1
${\displaystyle {\big .}\nabla T{\big .}}$ 是温度梯度，单位K·m−1

${\displaystyle q_{x}=-k{\frac {dT}{dx}}}$

### 积分形式

${\displaystyle P={\frac {\partial Q}{\partial t}}=-k\oint _{S}{{\overrightarrow {\nabla }}T\cdot \,{\overrightarrow {dA}}}}$

• ${\displaystyle {\big .}P={\frac {\partial Q}{\partial t}}{\big .}}$ 是热传导功率，即单位时间通过面积S的热量，单位W，而
• ${\displaystyle {\overrightarrow {dA}}}$ 是面元矢量，单位m2

${\displaystyle {\big .}P={\frac {\Delta Q}{\Delta t}}=-kA{\frac {\Delta T}{\Delta x}}}$

A 是介质的截面积，
${\displaystyle \Delta T}$ 是两端温差，
${\displaystyle \Delta x}$ 是两端距离。

## 热导

${\displaystyle {\big .}U={\frac {kA}{\Delta x}},\quad }$

${\displaystyle {\big .}P={\frac {\Delta Q}{\Delta t}}=U\,(-\Delta T).}$

${\displaystyle {\big .}R={\frac {1}{U}}={\frac {\Delta x}{kA}}={\frac {-\Delta T}{P}}.}$

${\displaystyle {\big .}{\frac {1}{U}}={\frac {1}{U_{1}}}+{\frac {1}{U_{2}}}+{\frac {1}{U_{3}}}+\cdots }$

${\displaystyle {\big .}P={\frac {\Delta Q}{\Delta t}}={\frac {A\,(-\Delta T)}{{\frac {\Delta x_{1}}{k_{1}}}+{\frac {\Delta x_{2}}{k_{2}}}+{\frac {\Delta x_{3}}{k_{3}}}+\cdots }}.}$

## 相關條目

This article uses material from the Wikipedia article "热传导", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

### Electrical Engineering

EPLAN, Aucotec, CAE, AutoCAD Electrical, IGE XAO, ElCAD, 2D drawings, 2D symbols, 3D content, 3D catalog, EPLAN Electric P8, Zuken E3, schematics, dataportal, data portal, wscad universe, electronic, ProPanel3D, .EDZ, eClass Advanced, eCl@ss Advanced