Licensed under Creative Commons Attribution 3.0 (Xmhaoyu).
系列条目 |
可再生能源 |
---|
可再生能源主题 |
風能是因空氣流動而產生的一種可利用的能量。空氣流具有的動能稱風能。空氣流速越高,它的動能越大。用風車可以把風的動能轉化為有用的機械能;而用風力發動機可以把風的動能轉化爲有用的電力,方法是透過傳動軸,將轉子(由以空氣動力推動的扇葉組成)的旋轉動力傳送至發電機。全世界以風力產生的電力在2008年共約2192億度,當年風力供應電力佔全世界用電量的1%,在2014年時全球風力發電量已增長到佔總用電量3%。風能雖然對大多數國家而言還不是主要的能源,但在2000年到2015年之間已經成長了二十四倍。
K風能是風的能量轉換成可利用的能量形式,例如使用風力渦輪機產生電力,風車產生機械動力,風泵抽水或排水,或風帆推動船。在現代,渦輪葉片將氣流的機械能轉為電能而成為發電機。在中古與古代則利用風車將蒐集到的機械能用來磨碎穀物或抽水。
一間大型的風力發電廠可以由連接輸電網的數百台風力發動機組成。
風能量是豐富、可再生、分佈廣泛、不產生污染,也不會排放溫室氣體。
我們把地球表面一定範圍內,經過長期測量、調查與統計得出的平均風能密度的概況hi lol該範圍內能利用的依據,通常以能密度線標示在地圖上。
人類利用風能的歷史可以追溯到西元前,例如帆船,但數千年來,風能技術發展緩慢,沒有引起人們足夠的重視。但自1973年第一次石油危机以來,在常規能源告急和全球生態環境惡化的雙重壓力下,風能作為新能源的一部分才重新有了長足的發展。風能作為一種無污染和可再生的新能源有著巨大的發展潛力,特別是對沿海島嶼,交通不便的偏遠山區,地廣人稀的草原牧場,以及遠離電網和近期內電網還難以達到的農村、邊疆,作為解決生產和生活能源的一種可靠途徑,有著十分重要的意義。即使在發達國家,風能作為一種高效清潔的新能源也日益受到重視,比如:美國能源部就曾經調查過,單是德克薩斯州和南達科他州兩州的風能密度就足以供應全美國的用電量。
2003年美國的風力發電成長就超過了所有發電機的平均成長率。自2004年起,風力發電更成為在所有新式能源中已是最便宜的了。在2001年風力能源的成本已降到20世纪6、70年代時的五分之一,而且隨著大瓦數發電機的使用,下降趨勢還會持續。[1][2]
估计地球所吸收的太阳能有1%到3%转化为风能,总量相当于地球上所有植物通过光合作用吸收太阳能转化为化学能的50到100倍。上了高空就會發現風的能量,那兒有時速超過160公里(100英哩160 km/h 100 mph)的強風。這些風量最後和地表及大氣間摩擦而以各種熱能方式釋放。
風能可以通過風車來提取。當風吹動渦輪時,風力帶風車動繞軸旋轉,使得風能轉化爲機械能。而風能轉化量直接與空氣密度、渦輪掃過的面積和風速的三次方成正比。風吹過風機渦輪(Wind turbine)而使得風速減弱,這也限制了渦輪可提取的能量。1919年,德國物理學家貝茲(Betz, 1885-1968)認為,不管如何设计渦輪,風機最多只能提取風中59%的能量,此稱為貝茲極限定律(Betz limit)。現今正在運作的渦輪所能達到的極限約為35%。[3]大多數風機實際效率範圍從5%到25%。風力發電機又可分為水平軸風力發電機和垂直軸風力發電機,垂直軸風力發電機又分為幾種,譬如Darrieus風機或Gorlov風機。
因為自然界中的風速常變化,并且给定地点所得的潛勢風能(Potential wind energy)并不代表风力发电机在該處实际可以产生的能量。为了估计在某一特定位置的风速频率,必須使用風速機率分佈函数来分析該地的風速歷史數據。風力發電最常用的風速機率函數為韋伯分布[[(Weibull distribution)],可较准确地反映在各个地点每小时的风速機率分布。韦伯分布中形状参数k = 2时便是萊利分布(Rayleigh distribution),萊利分布的另一参数可由平均風速來換算,因此萊利分布常被作为一个較粗略但更简单的機率模型。
因為地表附近,高度愈高,風速愈大。而風能是與風速的三次方成所正比,所以風機高度愈高,發電量愈多,因此現今有許多風機的高度都超過100 m。
因為自然界中的風速並不穩定,所以無法像使用燃料的火力發電廠一样,可以依照用電需求來調整發電量。因此風力發電整年發電量的計算方法與其他能源不同。安裝良好的風力發電機實際的發電量可達35%,跟一般使用燃料的發電廠的渦輪機相比(1000kW的風力發電機),每年可發電量最多可到350kW。雖然風能輸出的功率是難以預測的,但每年發電量的變化應在幾個百分比之內。
因風能不能持續产生,常以抽水蓄能電站或其他方法來儲存風能以保持電力能持續供應,这大約增加25%費用。
风能利用技术的不断革新,使这种丰富的无污染能源正重放异彩。据估计,二三十年内,风力发电量将要占欧洲共体(歐盟)电占全国总电力的30%左右。
風力發電廠(wind farm)是在同一地点的一群風力發動機用来产生电力。一个大型風力發電廠可能包括几百个独立的风力涡轮机,并覆盖数百平方英里的扩展区域,但在涡轮机之间的土地仍然可用于农业或其他用途,但是許多機種都有噪音過大的問題、因此必須遠離住家。風力發電廠既可以位於在陸地上,也可以位於在海洋上。
·風力發電十分便宜。
風力發電自80年代開始受到西方各國重視以來,至今全球風力發電量每年快速成長。
2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | |
---|---|---|---|---|---|---|---|---|---|---|
裝置量(MW) | 17,934 | 24,823 | 31,853 | 39,867 | 47,924 | 59,171 | 74,078 | 94,080 | 121,786 | 160,096 |
發電量(GWh) | 31,493 | 38,541 | 53,029 | 63,464 | 85,672 | 104,318 | 133,139 | 170,941 | 219,124 | 277,706 |
佔全球發電量比 | 0.20% | 0.25% | 0.33% | 0.38% | 0.49% | 0.57% | 0.70% | 0.86% | 1.08% | 1.38% |
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |||||
裝置量(MW) | 197,663 | 239,183 | 284,698 | 320,633 | 371,893 | 434,722 | ||||
發電量(GWh) | 341,526 | 435,938 | 526,487 | 643,668 | 716,450 | 841,231 | ||||
佔全球發電量比 | 1.59% | 1.97% | 2.31% | 2.76% | 3.00% | 3.49% |
|
|
2020年各國再生能源佔發電量比例之目標[8]:
國家 | 2014情況 | 2020目標 |
瑞典 | 63.3% | 62.9% |
奥地利 | 70.0% | 70.6% |
丹麥 | 48.5% | 50%(風電佔用電量比) |
法国 | 18.3% | 27% |
西班牙 | 37.8% | 38.1% |
德國 | 28.2% | 35% |
義大利 | 33.4% | 26% |
荷蘭 | 10.0% | 37% |
兩種推動制度之用意為形成保護市場,透過政府的力量讓可再生能源於電力市場上更具投資效益,而其最終目的為提升技術與降低成本,以確保可再生能源未來能於自由市場中與傳統能源競爭。
|archive-date=
中的日期值 (帮助)(Internet Archive version)
|
|
|
|
This article uses material from the Wikipedia article "風能", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
Environment Ecology